This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction eliminating an inequality in an antecedent. (Contributed by NM, 1-Jun-2007) (Proof shortened by Andrew Salmon, 25-May-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pm2.61dne.1 | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 → 𝜓 ) ) | |
| pm2.61dne.2 | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → 𝜓 ) ) | ||
| Assertion | pm2.61dne | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.61dne.1 | ⊢ ( 𝜑 → ( 𝐴 = 𝐵 → 𝜓 ) ) | |
| 2 | pm2.61dne.2 | ⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → 𝜓 ) ) | |
| 3 | 1 | com12 | ⊢ ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) |
| 4 | 2 | com12 | ⊢ ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) |
| 5 | 3 4 | pm2.61ine | ⊢ ( 𝜑 → 𝜓 ) |