This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| fpwwe2.2 | |- ( ph -> A e. V ) |
||
| fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
||
| fpwwe2.4 | |- X = U. dom W |
||
| Assertion | fpwwe2lem12 | |- ( ph -> ( X F ( W ` X ) ) e. X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | fpwwe2.2 | |- ( ph -> A e. V ) |
|
| 3 | fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
|
| 4 | fpwwe2.4 | |- X = U. dom W |
|
| 5 | ssun2 | |- { ( X F ( W ` X ) ) } C_ ( X u. { ( X F ( W ` X ) ) } ) |
|
| 6 | 2 | adantr | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> A e. V ) |
| 7 | 3 | adantlr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
| 8 | 1 6 7 4 | fpwwe2lem11 | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> X e. dom W ) |
| 9 | 1 6 7 4 | fpwwe2lem10 | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> W : dom W --> ~P ( X X. X ) ) |
| 10 | ffun | |- ( W : dom W --> ~P ( X X. X ) -> Fun W ) |
|
| 11 | funfvbrb | |- ( Fun W -> ( X e. dom W <-> X W ( W ` X ) ) ) |
|
| 12 | 9 10 11 | 3syl | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X e. dom W <-> X W ( W ` X ) ) ) |
| 13 | 8 12 | mpbid | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> X W ( W ` X ) ) |
| 14 | 1 6 | fpwwe2lem2 | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X W ( W ` X ) <-> ( ( X C_ A /\ ( W ` X ) C_ ( X X. X ) ) /\ ( ( W ` X ) We X /\ A. y e. X [. ( `' ( W ` X ) " { y } ) / u ]. ( u F ( ( W ` X ) i^i ( u X. u ) ) ) = y ) ) ) ) |
| 15 | 13 14 | mpbid | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( X C_ A /\ ( W ` X ) C_ ( X X. X ) ) /\ ( ( W ` X ) We X /\ A. y e. X [. ( `' ( W ` X ) " { y } ) / u ]. ( u F ( ( W ` X ) i^i ( u X. u ) ) ) = y ) ) ) |
| 16 | 15 | simpld | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X C_ A /\ ( W ` X ) C_ ( X X. X ) ) ) |
| 17 | 16 | simpld | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> X C_ A ) |
| 18 | 16 | simprd | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( W ` X ) C_ ( X X. X ) ) |
| 19 | 15 | simprd | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( W ` X ) We X /\ A. y e. X [. ( `' ( W ` X ) " { y } ) / u ]. ( u F ( ( W ` X ) i^i ( u X. u ) ) ) = y ) ) |
| 20 | 19 | simpld | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( W ` X ) We X ) |
| 21 | 17 18 20 | 3jca | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X C_ A /\ ( W ` X ) C_ ( X X. X ) /\ ( W ` X ) We X ) ) |
| 22 | 1 2 3 | fpwwe2lem4 | |- ( ( ph /\ ( X C_ A /\ ( W ` X ) C_ ( X X. X ) /\ ( W ` X ) We X ) ) -> ( X F ( W ` X ) ) e. A ) |
| 23 | 21 22 | syldan | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X F ( W ` X ) ) e. A ) |
| 24 | 23 | snssd | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> { ( X F ( W ` X ) ) } C_ A ) |
| 25 | 17 24 | unssd | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X u. { ( X F ( W ` X ) ) } ) C_ A ) |
| 26 | ssun1 | |- X C_ ( X u. { ( X F ( W ` X ) ) } ) |
|
| 27 | xpss12 | |- ( ( X C_ ( X u. { ( X F ( W ` X ) ) } ) /\ X C_ ( X u. { ( X F ( W ` X ) ) } ) ) -> ( X X. X ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) ) |
|
| 28 | 26 26 27 | mp2an | |- ( X X. X ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) |
| 29 | 18 28 | sstrdi | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( W ` X ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) ) |
| 30 | xpss12 | |- ( ( X C_ ( X u. { ( X F ( W ` X ) ) } ) /\ { ( X F ( W ` X ) ) } C_ ( X u. { ( X F ( W ` X ) ) } ) ) -> ( X X. { ( X F ( W ` X ) ) } ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) ) |
|
| 31 | 26 5 30 | mp2an | |- ( X X. { ( X F ( W ` X ) ) } ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) |
| 32 | 31 | a1i | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X X. { ( X F ( W ` X ) ) } ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) ) |
| 33 | 29 32 | unssd | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) ) |
| 34 | 25 33 | jca | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( X u. { ( X F ( W ` X ) ) } ) C_ A /\ ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) ) ) |
| 35 | ssdif0 | |- ( x C_ { ( X F ( W ` X ) ) } <-> ( x \ { ( X F ( W ` X ) ) } ) = (/) ) |
|
| 36 | simpllr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> -. ( X F ( W ` X ) ) e. X ) |
|
| 37 | 18 | ad2antrr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> ( W ` X ) C_ ( X X. X ) ) |
| 38 | 37 | ssbrd | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> ( ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) -> ( X F ( W ` X ) ) ( X X. X ) ( X F ( W ` X ) ) ) ) |
| 39 | brxp | |- ( ( X F ( W ` X ) ) ( X X. X ) ( X F ( W ` X ) ) <-> ( ( X F ( W ` X ) ) e. X /\ ( X F ( W ` X ) ) e. X ) ) |
|
| 40 | 39 | simplbi | |- ( ( X F ( W ` X ) ) ( X X. X ) ( X F ( W ` X ) ) -> ( X F ( W ` X ) ) e. X ) |
| 41 | 38 40 | syl6 | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> ( ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) -> ( X F ( W ` X ) ) e. X ) ) |
| 42 | 36 41 | mtod | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> -. ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) ) |
| 43 | brxp | |- ( ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) <-> ( ( X F ( W ` X ) ) e. X /\ ( X F ( W ` X ) ) e. { ( X F ( W ` X ) ) } ) ) |
|
| 44 | 43 | simplbi | |- ( ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) -> ( X F ( W ` X ) ) e. X ) |
| 45 | 36 44 | nsyl | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> -. ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) ) |
| 46 | ovex | |- ( X F ( W ` X ) ) e. _V |
|
| 47 | breq2 | |- ( y = ( X F ( W ` X ) ) -> ( ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) ( X F ( W ` X ) ) ) ) |
|
| 48 | brun | |- ( ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) ( X F ( W ` X ) ) <-> ( ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) ) ) |
|
| 49 | 47 48 | bitrdi | |- ( y = ( X F ( W ` X ) ) -> ( ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> ( ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) ) ) ) |
| 50 | 49 | notbid | |- ( y = ( X F ( W ` X ) ) -> ( -. ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> -. ( ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) ) ) ) |
| 51 | 46 50 | rexsn | |- ( E. y e. { ( X F ( W ` X ) ) } -. ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> -. ( ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) ) ) |
| 52 | ioran | |- ( -. ( ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) ) <-> ( -. ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) /\ -. ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) ) ) |
|
| 53 | 51 52 | bitri | |- ( E. y e. { ( X F ( W ` X ) ) } -. ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> ( -. ( X F ( W ` X ) ) ( W ` X ) ( X F ( W ` X ) ) /\ -. ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) ( X F ( W ` X ) ) ) ) |
| 54 | 42 45 53 | sylanbrc | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> E. y e. { ( X F ( W ` X ) ) } -. ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 55 | simpr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> x C_ { ( X F ( W ` X ) ) } ) |
|
| 56 | sssn | |- ( x C_ { ( X F ( W ` X ) ) } <-> ( x = (/) \/ x = { ( X F ( W ` X ) ) } ) ) |
|
| 57 | 55 56 | sylib | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> ( x = (/) \/ x = { ( X F ( W ` X ) ) } ) ) |
| 58 | simplrr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> x =/= (/) ) |
|
| 59 | 58 | neneqd | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> -. x = (/) ) |
| 60 | 57 59 | orcnd | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> x = { ( X F ( W ` X ) ) } ) |
| 61 | 60 | raleqdv | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> ( A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> A. z e. { ( X F ( W ` X ) ) } -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 62 | breq1 | |- ( z = ( X F ( W ` X ) ) -> ( z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
|
| 63 | 62 | notbid | |- ( z = ( X F ( W ` X ) ) -> ( -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> -. ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 64 | 46 63 | ralsn | |- ( A. z e. { ( X F ( W ` X ) ) } -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> -. ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 65 | 61 64 | bitrdi | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> ( A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> -. ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 66 | 60 65 | rexeqbidv | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> ( E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> E. y e. { ( X F ( W ` X ) ) } -. ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 67 | 54 66 | mpbird | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ x C_ { ( X F ( W ` X ) ) } ) -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 68 | 67 | ex | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) -> ( x C_ { ( X F ( W ` X ) ) } -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 69 | 35 68 | biimtrrid | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) -> ( ( x \ { ( X F ( W ` X ) ) } ) = (/) -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 70 | vex | |- x e. _V |
|
| 71 | difexg | |- ( x e. _V -> ( x \ { ( X F ( W ` X ) ) } ) e. _V ) |
|
| 72 | 70 71 | mp1i | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> ( x \ { ( X F ( W ` X ) ) } ) e. _V ) |
| 73 | wefr | |- ( ( W ` X ) We X -> ( W ` X ) Fr X ) |
|
| 74 | 20 73 | syl | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( W ` X ) Fr X ) |
| 75 | 74 | ad2antrr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> ( W ` X ) Fr X ) |
| 76 | simplrl | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> x C_ ( X u. { ( X F ( W ` X ) ) } ) ) |
|
| 77 | uncom | |- ( X u. { ( X F ( W ` X ) ) } ) = ( { ( X F ( W ` X ) ) } u. X ) |
|
| 78 | 76 77 | sseqtrdi | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> x C_ ( { ( X F ( W ` X ) ) } u. X ) ) |
| 79 | ssundif | |- ( x C_ ( { ( X F ( W ` X ) ) } u. X ) <-> ( x \ { ( X F ( W ` X ) ) } ) C_ X ) |
|
| 80 | 78 79 | sylib | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> ( x \ { ( X F ( W ` X ) ) } ) C_ X ) |
| 81 | simpr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) |
|
| 82 | fri | |- ( ( ( ( x \ { ( X F ( W ` X ) ) } ) e. _V /\ ( W ` X ) Fr X ) /\ ( ( x \ { ( X F ( W ` X ) ) } ) C_ X /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) ) -> E. y e. ( x \ { ( X F ( W ` X ) ) } ) A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( W ` X ) y ) |
|
| 83 | 72 75 80 81 82 | syl22anc | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> E. y e. ( x \ { ( X F ( W ` X ) ) } ) A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( W ` X ) y ) |
| 84 | brun | |- ( z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> ( z ( W ` X ) y \/ z ( X X. { ( X F ( W ` X ) ) } ) y ) ) |
|
| 85 | idd | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( z ( W ` X ) y -> z ( W ` X ) y ) ) |
|
| 86 | brxp | |- ( z ( X X. { ( X F ( W ` X ) ) } ) y <-> ( z e. X /\ y e. { ( X F ( W ` X ) ) } ) ) |
|
| 87 | 86 | simprbi | |- ( z ( X X. { ( X F ( W ` X ) ) } ) y -> y e. { ( X F ( W ` X ) ) } ) |
| 88 | eldifn | |- ( y e. ( x \ { ( X F ( W ` X ) ) } ) -> -. y e. { ( X F ( W ` X ) ) } ) |
|
| 89 | 88 | adantl | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> -. y e. { ( X F ( W ` X ) ) } ) |
| 90 | 89 | pm2.21d | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( y e. { ( X F ( W ` X ) ) } -> z ( W ` X ) y ) ) |
| 91 | 87 90 | syl5 | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( z ( X X. { ( X F ( W ` X ) ) } ) y -> z ( W ` X ) y ) ) |
| 92 | 85 91 | jaod | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( ( z ( W ` X ) y \/ z ( X X. { ( X F ( W ` X ) ) } ) y ) -> z ( W ` X ) y ) ) |
| 93 | 84 92 | biimtrid | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y -> z ( W ` X ) y ) ) |
| 94 | 93 | con3d | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( -. z ( W ` X ) y -> -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 95 | 94 | ralimdv | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( W ` X ) y -> A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 96 | simpr | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> -. ( X F ( W ` X ) ) e. X ) |
|
| 97 | 96 | ad3antrrr | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> -. ( X F ( W ` X ) ) e. X ) |
| 98 | 18 | ad3antrrr | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( W ` X ) C_ ( X X. X ) ) |
| 99 | 98 | ssbrd | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( ( X F ( W ` X ) ) ( W ` X ) y -> ( X F ( W ` X ) ) ( X X. X ) y ) ) |
| 100 | brxp | |- ( ( X F ( W ` X ) ) ( X X. X ) y <-> ( ( X F ( W ` X ) ) e. X /\ y e. X ) ) |
|
| 101 | 100 | simplbi | |- ( ( X F ( W ` X ) ) ( X X. X ) y -> ( X F ( W ` X ) ) e. X ) |
| 102 | 99 101 | syl6 | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( ( X F ( W ` X ) ) ( W ` X ) y -> ( X F ( W ` X ) ) e. X ) ) |
| 103 | 97 102 | mtod | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> -. ( X F ( W ` X ) ) ( W ` X ) y ) |
| 104 | brxp | |- ( ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y <-> ( ( X F ( W ` X ) ) e. X /\ y e. { ( X F ( W ` X ) ) } ) ) |
|
| 105 | 104 | simprbi | |- ( ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y -> y e. { ( X F ( W ` X ) ) } ) |
| 106 | 89 105 | nsyl | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> -. ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y ) |
| 107 | brun | |- ( ( X F ( W ` X ) ) ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> ( ( X F ( W ` X ) ) ( W ` X ) y \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y ) ) |
|
| 108 | 62 107 | bitrdi | |- ( z = ( X F ( W ` X ) ) -> ( z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> ( ( X F ( W ` X ) ) ( W ` X ) y \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y ) ) ) |
| 109 | 108 | notbid | |- ( z = ( X F ( W ` X ) ) -> ( -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> -. ( ( X F ( W ` X ) ) ( W ` X ) y \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y ) ) ) |
| 110 | 46 109 | ralsn | |- ( A. z e. { ( X F ( W ` X ) ) } -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> -. ( ( X F ( W ` X ) ) ( W ` X ) y \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y ) ) |
| 111 | ioran | |- ( -. ( ( X F ( W ` X ) ) ( W ` X ) y \/ ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y ) <-> ( -. ( X F ( W ` X ) ) ( W ` X ) y /\ -. ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y ) ) |
|
| 112 | 110 111 | bitri | |- ( A. z e. { ( X F ( W ` X ) ) } -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> ( -. ( X F ( W ` X ) ) ( W ` X ) y /\ -. ( X F ( W ` X ) ) ( X X. { ( X F ( W ` X ) ) } ) y ) ) |
| 113 | 103 106 112 | sylanbrc | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> A. z e. { ( X F ( W ` X ) ) } -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 114 | 95 113 | jctird | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( W ` X ) y -> ( A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y /\ A. z e. { ( X F ( W ` X ) ) } -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) ) |
| 115 | ssun1 | |- x C_ ( x u. { ( X F ( W ` X ) ) } ) |
|
| 116 | undif1 | |- ( ( x \ { ( X F ( W ` X ) ) } ) u. { ( X F ( W ` X ) ) } ) = ( x u. { ( X F ( W ` X ) ) } ) |
|
| 117 | 115 116 | sseqtrri | |- x C_ ( ( x \ { ( X F ( W ` X ) ) } ) u. { ( X F ( W ` X ) ) } ) |
| 118 | ralun | |- ( ( A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y /\ A. z e. { ( X F ( W ` X ) ) } -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) -> A. z e. ( ( x \ { ( X F ( W ` X ) ) } ) u. { ( X F ( W ` X ) ) } ) -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
|
| 119 | ssralv | |- ( x C_ ( ( x \ { ( X F ( W ` X ) ) } ) u. { ( X F ( W ` X ) ) } ) -> ( A. z e. ( ( x \ { ( X F ( W ` X ) ) } ) u. { ( X F ( W ` X ) ) } ) -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y -> A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
|
| 120 | 117 118 119 | mpsyl | |- ( ( A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y /\ A. z e. { ( X F ( W ` X ) ) } -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) -> A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 121 | 114 120 | syl6 | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( W ` X ) y -> A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 122 | eldifi | |- ( y e. ( x \ { ( X F ( W ` X ) ) } ) -> y e. x ) |
|
| 123 | 122 | adantl | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> y e. x ) |
| 124 | 121 123 | jctild | |- ( ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) /\ y e. ( x \ { ( X F ( W ` X ) ) } ) ) -> ( A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( W ` X ) y -> ( y e. x /\ A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) ) |
| 125 | 124 | expimpd | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> ( ( y e. ( x \ { ( X F ( W ` X ) ) } ) /\ A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( W ` X ) y ) -> ( y e. x /\ A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) ) |
| 126 | 125 | reximdv2 | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> ( E. y e. ( x \ { ( X F ( W ` X ) ) } ) A. z e. ( x \ { ( X F ( W ` X ) ) } ) -. z ( W ` X ) y -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 127 | 83 126 | mpd | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) /\ ( x \ { ( X F ( W ` X ) ) } ) =/= (/) ) -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 128 | 127 | ex | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) -> ( ( x \ { ( X F ( W ` X ) ) } ) =/= (/) -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 129 | 69 128 | pm2.61dne | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) ) -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 130 | 129 | ex | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 131 | 130 | alrimiv | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> A. x ( ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 132 | df-fr | |- ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) Fr ( X u. { ( X F ( W ` X ) ) } ) <-> A. x ( ( x C_ ( X u. { ( X F ( W ` X ) ) } ) /\ x =/= (/) ) -> E. y e. x A. z e. x -. z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
|
| 133 | 131 132 | sylibr | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) Fr ( X u. { ( X F ( W ` X ) ) } ) ) |
| 134 | elun | |- ( x e. ( X u. { ( X F ( W ` X ) ) } ) <-> ( x e. X \/ x e. { ( X F ( W ` X ) ) } ) ) |
|
| 135 | elun | |- ( y e. ( X u. { ( X F ( W ` X ) ) } ) <-> ( y e. X \/ y e. { ( X F ( W ` X ) ) } ) ) |
|
| 136 | 134 135 | anbi12i | |- ( ( x e. ( X u. { ( X F ( W ` X ) ) } ) /\ y e. ( X u. { ( X F ( W ` X ) ) } ) ) <-> ( ( x e. X \/ x e. { ( X F ( W ` X ) ) } ) /\ ( y e. X \/ y e. { ( X F ( W ` X ) ) } ) ) ) |
| 137 | weso | |- ( ( W ` X ) We X -> ( W ` X ) Or X ) |
|
| 138 | 20 137 | syl | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( W ` X ) Or X ) |
| 139 | solin | |- ( ( ( W ` X ) Or X /\ ( x e. X /\ y e. X ) ) -> ( x ( W ` X ) y \/ x = y \/ y ( W ` X ) x ) ) |
|
| 140 | 138 139 | sylan | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. X ) ) -> ( x ( W ` X ) y \/ x = y \/ y ( W ` X ) x ) ) |
| 141 | ssun1 | |- ( W ` X ) C_ ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) |
|
| 142 | 141 | a1i | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. X ) ) -> ( W ` X ) C_ ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) ) |
| 143 | 142 | ssbrd | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. X ) ) -> ( x ( W ` X ) y -> x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 144 | idd | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. X ) ) -> ( x = y -> x = y ) ) |
|
| 145 | 142 | ssbrd | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. X ) ) -> ( y ( W ` X ) x -> y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) |
| 146 | 143 144 145 | 3orim123d | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. X ) ) -> ( ( x ( W ` X ) y \/ x = y \/ y ( W ` X ) x ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) ) |
| 147 | 140 146 | mpd | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. X ) ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) |
| 148 | 147 | ex | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( x e. X /\ y e. X ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) ) |
| 149 | simpr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. { ( X F ( W ` X ) ) } /\ y e. X ) ) -> ( x e. { ( X F ( W ` X ) ) } /\ y e. X ) ) |
|
| 150 | 149 | ancomd | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. { ( X F ( W ` X ) ) } /\ y e. X ) ) -> ( y e. X /\ x e. { ( X F ( W ` X ) ) } ) ) |
| 151 | brxp | |- ( y ( X X. { ( X F ( W ` X ) ) } ) x <-> ( y e. X /\ x e. { ( X F ( W ` X ) ) } ) ) |
|
| 152 | 150 151 | sylibr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. { ( X F ( W ` X ) ) } /\ y e. X ) ) -> y ( X X. { ( X F ( W ` X ) ) } ) x ) |
| 153 | ssun2 | |- ( X X. { ( X F ( W ` X ) ) } ) C_ ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) |
|
| 154 | 153 | ssbri | |- ( y ( X X. { ( X F ( W ` X ) ) } ) x -> y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) |
| 155 | 3mix3 | |- ( y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) |
|
| 156 | 152 154 155 | 3syl | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. { ( X F ( W ` X ) ) } /\ y e. X ) ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) |
| 157 | 156 | ex | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( x e. { ( X F ( W ` X ) ) } /\ y e. X ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) ) |
| 158 | simpr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. { ( X F ( W ` X ) ) } ) ) -> ( x e. X /\ y e. { ( X F ( W ` X ) ) } ) ) |
|
| 159 | brxp | |- ( x ( X X. { ( X F ( W ` X ) ) } ) y <-> ( x e. X /\ y e. { ( X F ( W ` X ) ) } ) ) |
|
| 160 | 158 159 | sylibr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. { ( X F ( W ` X ) ) } ) ) -> x ( X X. { ( X F ( W ` X ) ) } ) y ) |
| 161 | 153 | ssbri | |- ( x ( X X. { ( X F ( W ` X ) ) } ) y -> x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 162 | 3mix1 | |- ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) |
|
| 163 | 160 161 162 | 3syl | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( x e. X /\ y e. { ( X F ( W ` X ) ) } ) ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) |
| 164 | 163 | ex | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( x e. X /\ y e. { ( X F ( W ` X ) ) } ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) ) |
| 165 | elsni | |- ( x e. { ( X F ( W ` X ) ) } -> x = ( X F ( W ` X ) ) ) |
|
| 166 | elsni | |- ( y e. { ( X F ( W ` X ) ) } -> y = ( X F ( W ` X ) ) ) |
|
| 167 | eqtr3 | |- ( ( x = ( X F ( W ` X ) ) /\ y = ( X F ( W ` X ) ) ) -> x = y ) |
|
| 168 | 165 166 167 | syl2an | |- ( ( x e. { ( X F ( W ` X ) ) } /\ y e. { ( X F ( W ` X ) ) } ) -> x = y ) |
| 169 | 168 | 3mix2d | |- ( ( x e. { ( X F ( W ` X ) ) } /\ y e. { ( X F ( W ` X ) ) } ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) |
| 170 | 169 | a1i | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( x e. { ( X F ( W ` X ) ) } /\ y e. { ( X F ( W ` X ) ) } ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) ) |
| 171 | 148 157 164 170 | ccased | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( ( x e. X \/ x e. { ( X F ( W ` X ) ) } ) /\ ( y e. X \/ y e. { ( X F ( W ` X ) ) } ) ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) ) |
| 172 | 136 171 | biimtrid | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( x e. ( X u. { ( X F ( W ` X ) ) } ) /\ y e. ( X u. { ( X F ( W ` X ) ) } ) ) -> ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) ) |
| 173 | 172 | ralrimivv | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> A. x e. ( X u. { ( X F ( W ` X ) ) } ) A. y e. ( X u. { ( X F ( W ` X ) ) } ) ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) |
| 174 | dfwe2 | |- ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) We ( X u. { ( X F ( W ` X ) ) } ) <-> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) Fr ( X u. { ( X F ( W ` X ) ) } ) /\ A. x e. ( X u. { ( X F ( W ` X ) ) } ) A. y e. ( X u. { ( X F ( W ` X ) ) } ) ( x ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y \/ x = y \/ y ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) x ) ) ) |
|
| 175 | 133 173 174 | sylanbrc | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) We ( X u. { ( X F ( W ` X ) ) } ) ) |
| 176 | 1 | fpwwe2cbv | |- W = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / b ]. ( b F ( s i^i ( b X. b ) ) ) = z ) ) } |
| 177 | 176 6 13 | fpwwe2lem3 | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( ( `' ( W ` X ) " { y } ) F ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) = y ) |
| 178 | cnvimass | |- ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) C_ dom ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) |
|
| 179 | fvex | |- ( W ` X ) e. _V |
|
| 180 | snex | |- { ( X F ( W ` X ) ) } e. _V |
|
| 181 | xpexg | |- ( ( X e. dom W /\ { ( X F ( W ` X ) ) } e. _V ) -> ( X X. { ( X F ( W ` X ) ) } ) e. _V ) |
|
| 182 | 8 180 181 | sylancl | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X X. { ( X F ( W ` X ) ) } ) e. _V ) |
| 183 | unexg | |- ( ( ( W ` X ) e. _V /\ ( X X. { ( X F ( W ` X ) ) } ) e. _V ) -> ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) e. _V ) |
|
| 184 | 179 182 183 | sylancr | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) e. _V ) |
| 185 | 184 | dmexd | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> dom ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) e. _V ) |
| 186 | ssexg | |- ( ( ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) C_ dom ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) /\ dom ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) e. _V ) -> ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) e. _V ) |
|
| 187 | 178 185 186 | sylancr | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) e. _V ) |
| 188 | 187 | adantr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) e. _V ) |
| 189 | id | |- ( u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) -> u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) |
|
| 190 | simpr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> y e. X ) |
|
| 191 | simplr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> -. ( X F ( W ` X ) ) e. X ) |
|
| 192 | nelne2 | |- ( ( y e. X /\ -. ( X F ( W ` X ) ) e. X ) -> y =/= ( X F ( W ` X ) ) ) |
|
| 193 | 190 191 192 | syl2anc | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> y =/= ( X F ( W ` X ) ) ) |
| 194 | 87 166 | syl | |- ( z ( X X. { ( X F ( W ` X ) ) } ) y -> y = ( X F ( W ` X ) ) ) |
| 195 | 194 | necon3ai | |- ( y =/= ( X F ( W ` X ) ) -> -. z ( X X. { ( X F ( W ` X ) ) } ) y ) |
| 196 | biorf | |- ( -. z ( X X. { ( X F ( W ` X ) ) } ) y -> ( z ( W ` X ) y <-> ( z ( X X. { ( X F ( W ` X ) ) } ) y \/ z ( W ` X ) y ) ) ) |
|
| 197 | 193 195 196 | 3syl | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( z ( W ` X ) y <-> ( z ( X X. { ( X F ( W ` X ) ) } ) y \/ z ( W ` X ) y ) ) ) |
| 198 | orcom | |- ( ( z ( X X. { ( X F ( W ` X ) ) } ) y \/ z ( W ` X ) y ) <-> ( z ( W ` X ) y \/ z ( X X. { ( X F ( W ` X ) ) } ) y ) ) |
|
| 199 | 198 84 | bitr4i | |- ( ( z ( X X. { ( X F ( W ` X ) ) } ) y \/ z ( W ` X ) y ) <-> z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 200 | 197 199 | bitr2di | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y <-> z ( W ` X ) y ) ) |
| 201 | vex | |- z e. _V |
|
| 202 | 201 | eliniseg | |- ( y e. _V -> ( z e. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) <-> z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) ) |
| 203 | 202 | elv | |- ( z e. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) <-> z ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) y ) |
| 204 | 201 | eliniseg | |- ( y e. _V -> ( z e. ( `' ( W ` X ) " { y } ) <-> z ( W ` X ) y ) ) |
| 205 | 204 | elv | |- ( z e. ( `' ( W ` X ) " { y } ) <-> z ( W ` X ) y ) |
| 206 | 200 203 205 | 3bitr4g | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( z e. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) <-> z e. ( `' ( W ` X ) " { y } ) ) ) |
| 207 | 206 | eqrdv | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) = ( `' ( W ` X ) " { y } ) ) |
| 208 | 189 207 | sylan9eqr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> u = ( `' ( W ` X ) " { y } ) ) |
| 209 | 208 | sqxpeqd | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( u X. u ) = ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) |
| 210 | 209 | ineq2d | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) = ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) |
| 211 | indir | |- ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) = ( ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) u. ( ( X X. { ( X F ( W ` X ) ) } ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) |
|
| 212 | inxp | |- ( ( X X. { ( X F ( W ` X ) ) } ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) = ( ( X i^i ( `' ( W ` X ) " { y } ) ) X. ( { ( X F ( W ` X ) ) } i^i ( `' ( W ` X ) " { y } ) ) ) |
|
| 213 | incom | |- ( { ( X F ( W ` X ) ) } i^i ( `' ( W ` X ) " { y } ) ) = ( ( `' ( W ` X ) " { y } ) i^i { ( X F ( W ` X ) ) } ) |
|
| 214 | cnvimass | |- ( `' ( W ` X ) " { y } ) C_ dom ( W ` X ) |
|
| 215 | 18 | adantr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( W ` X ) C_ ( X X. X ) ) |
| 216 | dmss | |- ( ( W ` X ) C_ ( X X. X ) -> dom ( W ` X ) C_ dom ( X X. X ) ) |
|
| 217 | 215 216 | syl | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> dom ( W ` X ) C_ dom ( X X. X ) ) |
| 218 | dmxpid | |- dom ( X X. X ) = X |
|
| 219 | 217 218 | sseqtrdi | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> dom ( W ` X ) C_ X ) |
| 220 | 214 219 | sstrid | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( `' ( W ` X ) " { y } ) C_ X ) |
| 221 | 220 191 | ssneldd | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> -. ( X F ( W ` X ) ) e. ( `' ( W ` X ) " { y } ) ) |
| 222 | disjsn | |- ( ( ( `' ( W ` X ) " { y } ) i^i { ( X F ( W ` X ) ) } ) = (/) <-> -. ( X F ( W ` X ) ) e. ( `' ( W ` X ) " { y } ) ) |
|
| 223 | 221 222 | sylibr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( ( `' ( W ` X ) " { y } ) i^i { ( X F ( W ` X ) ) } ) = (/) ) |
| 224 | 213 223 | eqtrid | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( { ( X F ( W ` X ) ) } i^i ( `' ( W ` X ) " { y } ) ) = (/) ) |
| 225 | 224 | xpeq2d | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( ( X i^i ( `' ( W ` X ) " { y } ) ) X. ( { ( X F ( W ` X ) ) } i^i ( `' ( W ` X ) " { y } ) ) ) = ( ( X i^i ( `' ( W ` X ) " { y } ) ) X. (/) ) ) |
| 226 | xp0 | |- ( ( X i^i ( `' ( W ` X ) " { y } ) ) X. (/) ) = (/) |
|
| 227 | 225 226 | eqtrdi | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( ( X i^i ( `' ( W ` X ) " { y } ) ) X. ( { ( X F ( W ` X ) ) } i^i ( `' ( W ` X ) " { y } ) ) ) = (/) ) |
| 228 | 212 227 | eqtrid | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( ( X X. { ( X F ( W ` X ) ) } ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) = (/) ) |
| 229 | 228 | uneq2d | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) u. ( ( X X. { ( X F ( W ` X ) ) } ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) = ( ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) u. (/) ) ) |
| 230 | 211 229 | eqtrid | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) = ( ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) u. (/) ) ) |
| 231 | un0 | |- ( ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) u. (/) ) = ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) |
|
| 232 | 230 231 | eqtrdi | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) = ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) |
| 233 | 232 | adantr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) = ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) |
| 234 | 210 233 | eqtrd | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) = ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) |
| 235 | 208 234 | oveq12d | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = ( ( `' ( W ` X ) " { y } ) F ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) ) |
| 236 | 235 | eqeq1d | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y <-> ( ( `' ( W ` X ) " { y } ) F ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) = y ) ) |
| 237 | 188 236 | sbcied | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> ( [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y <-> ( ( `' ( W ` X ) " { y } ) F ( ( W ` X ) i^i ( ( `' ( W ` X ) " { y } ) X. ( `' ( W ` X ) " { y } ) ) ) ) = y ) ) |
| 238 | 177 237 | mpbird | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. X ) -> [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y ) |
| 239 | 166 | adantl | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> y = ( X F ( W ` X ) ) ) |
| 240 | 239 | eqcomd | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( X F ( W ` X ) ) = y ) |
| 241 | 187 | adantr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) e. _V ) |
| 242 | simplr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> -. ( X F ( W ` X ) ) e. X ) |
|
| 243 | 239 | eleq1d | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( y e. dom `' ( W ` X ) <-> ( X F ( W ` X ) ) e. dom `' ( W ` X ) ) ) |
| 244 | 18 | adantr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( W ` X ) C_ ( X X. X ) ) |
| 245 | rnss | |- ( ( W ` X ) C_ ( X X. X ) -> ran ( W ` X ) C_ ran ( X X. X ) ) |
|
| 246 | 244 245 | syl | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ran ( W ` X ) C_ ran ( X X. X ) ) |
| 247 | df-rn | |- ran ( W ` X ) = dom `' ( W ` X ) |
|
| 248 | rnxpid | |- ran ( X X. X ) = X |
|
| 249 | 246 247 248 | 3sstr3g | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> dom `' ( W ` X ) C_ X ) |
| 250 | 249 | sseld | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( ( X F ( W ` X ) ) e. dom `' ( W ` X ) -> ( X F ( W ` X ) ) e. X ) ) |
| 251 | 243 250 | sylbid | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( y e. dom `' ( W ` X ) -> ( X F ( W ` X ) ) e. X ) ) |
| 252 | 242 251 | mtod | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> -. y e. dom `' ( W ` X ) ) |
| 253 | ndmima | |- ( -. y e. dom `' ( W ` X ) -> ( `' ( W ` X ) " { y } ) = (/) ) |
|
| 254 | 252 253 | syl | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( `' ( W ` X ) " { y } ) = (/) ) |
| 255 | 239 | sneqd | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> { y } = { ( X F ( W ` X ) ) } ) |
| 256 | 255 | imaeq2d | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( `' ( X X. { ( X F ( W ` X ) ) } ) " { y } ) = ( `' ( X X. { ( X F ( W ` X ) ) } ) " { ( X F ( W ` X ) ) } ) ) |
| 257 | df-ima | |- ( `' ( X X. { ( X F ( W ` X ) ) } ) " { ( X F ( W ` X ) ) } ) = ran ( `' ( X X. { ( X F ( W ` X ) ) } ) |` { ( X F ( W ` X ) ) } ) |
|
| 258 | cnvxp | |- `' ( X X. { ( X F ( W ` X ) ) } ) = ( { ( X F ( W ` X ) ) } X. X ) |
|
| 259 | 258 | reseq1i | |- ( `' ( X X. { ( X F ( W ` X ) ) } ) |` { ( X F ( W ` X ) ) } ) = ( ( { ( X F ( W ` X ) ) } X. X ) |` { ( X F ( W ` X ) ) } ) |
| 260 | ssid | |- { ( X F ( W ` X ) ) } C_ { ( X F ( W ` X ) ) } |
|
| 261 | xpssres | |- ( { ( X F ( W ` X ) ) } C_ { ( X F ( W ` X ) ) } -> ( ( { ( X F ( W ` X ) ) } X. X ) |` { ( X F ( W ` X ) ) } ) = ( { ( X F ( W ` X ) ) } X. X ) ) |
|
| 262 | 260 261 | ax-mp | |- ( ( { ( X F ( W ` X ) ) } X. X ) |` { ( X F ( W ` X ) ) } ) = ( { ( X F ( W ` X ) ) } X. X ) |
| 263 | 259 262 | eqtri | |- ( `' ( X X. { ( X F ( W ` X ) ) } ) |` { ( X F ( W ` X ) ) } ) = ( { ( X F ( W ` X ) ) } X. X ) |
| 264 | 263 | rneqi | |- ran ( `' ( X X. { ( X F ( W ` X ) ) } ) |` { ( X F ( W ` X ) ) } ) = ran ( { ( X F ( W ` X ) ) } X. X ) |
| 265 | 46 | snnz | |- { ( X F ( W ` X ) ) } =/= (/) |
| 266 | rnxp | |- ( { ( X F ( W ` X ) ) } =/= (/) -> ran ( { ( X F ( W ` X ) ) } X. X ) = X ) |
|
| 267 | 265 266 | ax-mp | |- ran ( { ( X F ( W ` X ) ) } X. X ) = X |
| 268 | 264 267 | eqtri | |- ran ( `' ( X X. { ( X F ( W ` X ) ) } ) |` { ( X F ( W ` X ) ) } ) = X |
| 269 | 257 268 | eqtri | |- ( `' ( X X. { ( X F ( W ` X ) ) } ) " { ( X F ( W ` X ) ) } ) = X |
| 270 | 256 269 | eqtrdi | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( `' ( X X. { ( X F ( W ` X ) ) } ) " { y } ) = X ) |
| 271 | 254 270 | uneq12d | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( ( `' ( W ` X ) " { y } ) u. ( `' ( X X. { ( X F ( W ` X ) ) } ) " { y } ) ) = ( (/) u. X ) ) |
| 272 | cnvun | |- `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) = ( `' ( W ` X ) u. `' ( X X. { ( X F ( W ` X ) ) } ) ) |
|
| 273 | 272 | imaeq1i | |- ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) = ( ( `' ( W ` X ) u. `' ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) |
| 274 | imaundir | |- ( ( `' ( W ` X ) u. `' ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) = ( ( `' ( W ` X ) " { y } ) u. ( `' ( X X. { ( X F ( W ` X ) ) } ) " { y } ) ) |
|
| 275 | 273 274 | eqtri | |- ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) = ( ( `' ( W ` X ) " { y } ) u. ( `' ( X X. { ( X F ( W ` X ) ) } ) " { y } ) ) |
| 276 | un0 | |- ( X u. (/) ) = X |
|
| 277 | uncom | |- ( X u. (/) ) = ( (/) u. X ) |
|
| 278 | 276 277 | eqtr3i | |- X = ( (/) u. X ) |
| 279 | 271 275 278 | 3eqtr4g | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) = X ) |
| 280 | 189 279 | sylan9eqr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> u = X ) |
| 281 | 280 | sqxpeqd | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( u X. u ) = ( X X. X ) ) |
| 282 | 281 | ineq2d | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) = ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( X X. X ) ) ) |
| 283 | indir | |- ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( X X. X ) ) = ( ( ( W ` X ) i^i ( X X. X ) ) u. ( ( X X. { ( X F ( W ` X ) ) } ) i^i ( X X. X ) ) ) |
|
| 284 | dfss2 | |- ( ( W ` X ) C_ ( X X. X ) <-> ( ( W ` X ) i^i ( X X. X ) ) = ( W ` X ) ) |
|
| 285 | 244 284 | sylib | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( ( W ` X ) i^i ( X X. X ) ) = ( W ` X ) ) |
| 286 | incom | |- ( { ( X F ( W ` X ) ) } i^i X ) = ( X i^i { ( X F ( W ` X ) ) } ) |
|
| 287 | disjsn | |- ( ( X i^i { ( X F ( W ` X ) ) } ) = (/) <-> -. ( X F ( W ` X ) ) e. X ) |
|
| 288 | 242 287 | sylibr | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( X i^i { ( X F ( W ` X ) ) } ) = (/) ) |
| 289 | 286 288 | eqtrid | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( { ( X F ( W ` X ) ) } i^i X ) = (/) ) |
| 290 | 289 | xpeq2d | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( X X. ( { ( X F ( W ` X ) ) } i^i X ) ) = ( X X. (/) ) ) |
| 291 | xpindi | |- ( X X. ( { ( X F ( W ` X ) ) } i^i X ) ) = ( ( X X. { ( X F ( W ` X ) ) } ) i^i ( X X. X ) ) |
|
| 292 | xp0 | |- ( X X. (/) ) = (/) |
|
| 293 | 290 291 292 | 3eqtr3g | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( ( X X. { ( X F ( W ` X ) ) } ) i^i ( X X. X ) ) = (/) ) |
| 294 | 285 293 | uneq12d | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( ( ( W ` X ) i^i ( X X. X ) ) u. ( ( X X. { ( X F ( W ` X ) ) } ) i^i ( X X. X ) ) ) = ( ( W ` X ) u. (/) ) ) |
| 295 | 283 294 | eqtrid | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( X X. X ) ) = ( ( W ` X ) u. (/) ) ) |
| 296 | un0 | |- ( ( W ` X ) u. (/) ) = ( W ` X ) |
|
| 297 | 295 296 | eqtrdi | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( X X. X ) ) = ( W ` X ) ) |
| 298 | 297 | adantr | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( X X. X ) ) = ( W ` X ) ) |
| 299 | 282 298 | eqtrd | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) = ( W ` X ) ) |
| 300 | 280 299 | oveq12d | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = ( X F ( W ` X ) ) ) |
| 301 | 300 | eqeq1d | |- ( ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) /\ u = ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) ) -> ( ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y <-> ( X F ( W ` X ) ) = y ) ) |
| 302 | 241 301 | sbcied | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> ( [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y <-> ( X F ( W ` X ) ) = y ) ) |
| 303 | 240 302 | mpbird | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. { ( X F ( W ` X ) ) } ) -> [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y ) |
| 304 | 238 303 | jaodan | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ ( y e. X \/ y e. { ( X F ( W ` X ) ) } ) ) -> [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y ) |
| 305 | 135 304 | sylan2b | |- ( ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) /\ y e. ( X u. { ( X F ( W ` X ) ) } ) ) -> [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y ) |
| 306 | 305 | ralrimiva | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> A. y e. ( X u. { ( X F ( W ` X ) ) } ) [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y ) |
| 307 | 175 306 | jca | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) We ( X u. { ( X F ( W ` X ) ) } ) /\ A. y e. ( X u. { ( X F ( W ` X ) ) } ) [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y ) ) |
| 308 | 1 2 | fpwwe2lem2 | |- ( ph -> ( ( X u. { ( X F ( W ` X ) ) } ) W ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) <-> ( ( ( X u. { ( X F ( W ` X ) ) } ) C_ A /\ ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) ) /\ ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) We ( X u. { ( X F ( W ` X ) ) } ) /\ A. y e. ( X u. { ( X F ( W ` X ) ) } ) [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y ) ) ) ) |
| 309 | 308 | adantr | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( ( X u. { ( X F ( W ` X ) ) } ) W ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) <-> ( ( ( X u. { ( X F ( W ` X ) ) } ) C_ A /\ ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) C_ ( ( X u. { ( X F ( W ` X ) ) } ) X. ( X u. { ( X F ( W ` X ) ) } ) ) ) /\ ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) We ( X u. { ( X F ( W ` X ) ) } ) /\ A. y e. ( X u. { ( X F ( W ` X ) ) } ) [. ( `' ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) " { y } ) / u ]. ( u F ( ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) i^i ( u X. u ) ) ) = y ) ) ) ) |
| 310 | 34 307 309 | mpbir2and | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X u. { ( X F ( W ` X ) ) } ) W ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) ) |
| 311 | 1 | relopabiv | |- Rel W |
| 312 | 311 | releldmi | |- ( ( X u. { ( X F ( W ` X ) ) } ) W ( ( W ` X ) u. ( X X. { ( X F ( W ` X ) ) } ) ) -> ( X u. { ( X F ( W ` X ) ) } ) e. dom W ) |
| 313 | elssuni | |- ( ( X u. { ( X F ( W ` X ) ) } ) e. dom W -> ( X u. { ( X F ( W ` X ) ) } ) C_ U. dom W ) |
|
| 314 | 310 312 313 | 3syl | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X u. { ( X F ( W ` X ) ) } ) C_ U. dom W ) |
| 315 | 314 4 | sseqtrrdi | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X u. { ( X F ( W ` X ) ) } ) C_ X ) |
| 316 | 5 315 | sstrid | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> { ( X F ( W ` X ) ) } C_ X ) |
| 317 | 46 | snss | |- ( ( X F ( W ` X ) ) e. X <-> { ( X F ( W ` X ) ) } C_ X ) |
| 318 | 316 317 | sylibr | |- ( ( ph /\ -. ( X F ( W ` X ) ) e. X ) -> ( X F ( W ` X ) ) e. X ) |
| 319 | 318 | pm2.18da | |- ( ph -> ( X F ( W ` X ) ) e. X ) |