This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Intersection of two Cartesian products. Exercise 9 of TakeutiZaring p. 25. (Contributed by NM, 3-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011) Avoid ax-10 , ax-12 . (Revised by SN, 5-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inxp | ⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relinxp | ⊢ Rel ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) | |
| 2 | relxp | ⊢ Rel ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) | |
| 3 | an4 | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) | |
| 4 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) | |
| 5 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 × 𝐷 ) ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) | |
| 6 | 4 5 | anbi12i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 × 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 7 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 8 | elin | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) | |
| 9 | 7 8 | anbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐷 ) ) ) |
| 10 | 3 6 9 | 3bitr4i | ⊢ ( ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 × 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ) |
| 11 | elin | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 × 𝐵 ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐶 × 𝐷 ) ) ) | |
| 12 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ∧ 𝑦 ∈ ( 𝐵 ∩ 𝐷 ) ) ) | |
| 13 | 10 11 12 | 3bitr4i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) ) |
| 14 | 1 2 13 | eqrelriiv | ⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × 𝐷 ) ) = ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ 𝐷 ) ) |