This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strict order relation is linear (satisfies trichotomy). (Contributed by NM, 21-Jan-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | solin | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 𝑅 𝑦 ↔ 𝐵 𝑅 𝑦 ) ) | |
| 2 | eqeq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝑦 ↔ 𝐵 = 𝑦 ) ) | |
| 3 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝐵 ) ) | |
| 4 | 1 2 3 | 3orbi123d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝐵 𝑅 𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦 𝑅 𝐵 ) ) ) |
| 5 | 4 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑅 Or 𝐴 → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ↔ ( 𝑅 Or 𝐴 → ( 𝐵 𝑅 𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦 𝑅 𝐵 ) ) ) ) |
| 6 | breq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐵 𝑅 𝑦 ↔ 𝐵 𝑅 𝐶 ) ) | |
| 7 | eqeq2 | ⊢ ( 𝑦 = 𝐶 → ( 𝐵 = 𝑦 ↔ 𝐵 = 𝐶 ) ) | |
| 8 | breq1 | ⊢ ( 𝑦 = 𝐶 → ( 𝑦 𝑅 𝐵 ↔ 𝐶 𝑅 𝐵 ) ) | |
| 9 | 6 7 8 | 3orbi123d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝐵 𝑅 𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦 𝑅 𝐵 ) ↔ ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑦 = 𝐶 → ( ( 𝑅 Or 𝐴 → ( 𝐵 𝑅 𝑦 ∨ 𝐵 = 𝑦 ∨ 𝑦 𝑅 𝐵 ) ) ↔ ( 𝑅 Or 𝐴 → ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) ) |
| 11 | df-so | ⊢ ( 𝑅 Or 𝐴 ↔ ( 𝑅 Po 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) | |
| 12 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑧 𝑅 𝑦 ) ) | |
| 13 | equequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑧 = 𝑦 ) ) | |
| 14 | breq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑦 𝑅 𝑧 ) ) | |
| 15 | 12 13 14 | 3orbi123d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑧 𝑅 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 𝑅 𝑧 ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝑥 = 𝑧 → ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝑧 𝑅 𝑦 ∨ 𝑧 = 𝑦 ∨ 𝑦 𝑅 𝑧 ) ) ) |
| 17 | 16 | rspw | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( 𝑥 ∈ 𝐴 → ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 18 | breq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 𝑅 𝑦 ↔ 𝑥 𝑅 𝑧 ) ) | |
| 19 | equequ2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) | |
| 20 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝑅 𝑥 ↔ 𝑧 𝑅 𝑥 ) ) | |
| 21 | 18 19 20 | 3orbi123d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ↔ ( 𝑥 𝑅 𝑧 ∨ 𝑥 = 𝑧 ∨ 𝑧 𝑅 𝑥 ) ) ) |
| 22 | 21 | rspw | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 23 | 17 22 | syl6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( 𝑥 ∈ 𝐴 → ( 𝑦 ∈ 𝐴 → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) ) |
| 24 | 23 | impd | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 25 | 11 24 | simplbiim | ⊢ ( 𝑅 Or 𝐴 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 26 | 25 | com12 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑅 Or 𝐴 → ( 𝑥 𝑅 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 𝑅 𝑥 ) ) ) |
| 27 | 5 10 26 | vtocl2ga | ⊢ ( ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) → ( 𝑅 Or 𝐴 → ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) ) |
| 28 | 27 | impcom | ⊢ ( ( 𝑅 Or 𝐴 ∧ ( 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ) → ( 𝐵 𝑅 𝐶 ∨ 𝐵 = 𝐶 ∨ 𝐶 𝑅 𝐵 ) ) |