This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 28-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | eliniseg.1 | ⊢ 𝐶 ∈ V | |
| Assertion | eliniseg | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐶 ∈ ( ◡ 𝐴 “ { 𝐵 } ) ↔ 𝐶 𝐴 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliniseg.1 | ⊢ 𝐶 ∈ V | |
| 2 | elinisegg | ⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V ) → ( 𝐶 ∈ ( ◡ 𝐴 “ { 𝐵 } ) ↔ 𝐶 𝐴 𝐵 ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐵 ∈ 𝑉 → ( 𝐶 ∈ ( ◡ 𝐴 “ { 𝐵 } ) ↔ 𝐶 𝐴 𝐵 ) ) |