This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a Cartesian product. Exercise 11 of Suppes p. 67. (Contributed by NM, 14-Aug-1999) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnvxp | ⊢ ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvopab | ⊢ ◡ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } | |
| 2 | ancom | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) | |
| 3 | 2 | opabbii | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) } |
| 4 | 1 3 | eqtri | ⊢ ◡ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) } |
| 5 | df-xp | ⊢ ( 𝐴 × 𝐵 ) = { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } | |
| 6 | 5 | cnveqi | ⊢ ◡ ( 𝐴 × 𝐵 ) = ◡ { 〈 𝑦 , 𝑥 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) } |
| 7 | df-xp | ⊢ ( 𝐵 × 𝐴 ) = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐴 ) } | |
| 8 | 4 6 7 | 3eqtr4i | ⊢ ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) |