This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given any function F from well-orderings of subsets of A to A , there is a unique well-ordered subset <. X , ( WX ) >. which "agrees" with F in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a . Theorem 1.1 of KanamoriPincus p. 415. (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | ||
| fpwwe2.4 | ⊢ 𝑋 = ∪ dom 𝑊 | ||
| Assertion | fpwwe2 | ⊢ ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } | |
| 2 | fpwwe2.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | fpwwe2.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) | |
| 4 | fpwwe2.4 | ⊢ 𝑋 = ∪ dom 𝑊 | |
| 5 | 1 2 3 4 | fpwwe2lem10 | ⊢ ( 𝜑 → 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 6 | 5 | ffund | ⊢ ( 𝜑 → Fun 𝑊 ) |
| 7 | funbrfv2b | ⊢ ( Fun 𝑊 → ( 𝑌 𝑊 𝑅 ↔ ( 𝑌 ∈ dom 𝑊 ∧ ( 𝑊 ‘ 𝑌 ) = 𝑅 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝜑 → ( 𝑌 𝑊 𝑅 ↔ ( 𝑌 ∈ dom 𝑊 ∧ ( 𝑊 ‘ 𝑌 ) = 𝑅 ) ) ) |
| 9 | 8 | simprbda | ⊢ ( ( 𝜑 ∧ 𝑌 𝑊 𝑅 ) → 𝑌 ∈ dom 𝑊 ) |
| 10 | 9 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 ∈ dom 𝑊 ) |
| 11 | elssuni | ⊢ ( 𝑌 ∈ dom 𝑊 → 𝑌 ⊆ ∪ dom 𝑊 ) | |
| 12 | 11 4 | sseqtrrdi | ⊢ ( 𝑌 ∈ dom 𝑊 → 𝑌 ⊆ 𝑋 ) |
| 13 | 10 12 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
| 14 | simpl | ⊢ ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑊 ‘ 𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) → 𝑋 ⊆ 𝑌 ) | |
| 15 | 14 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑊 ‘ 𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) → 𝑋 ⊆ 𝑌 ) ) |
| 16 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) | |
| 17 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝐴 ∈ 𝑉 ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝐴 ∈ 𝑉 ) |
| 19 | 1 2 3 4 | fpwwe2lem11 | ⊢ ( 𝜑 → 𝑋 ∈ dom 𝑊 ) |
| 20 | funfvbrb | ⊢ ( Fun 𝑊 → ( 𝑋 ∈ dom 𝑊 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) | |
| 21 | 6 20 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ dom 𝑊 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) |
| 22 | 19 21 | mpbid | ⊢ ( 𝜑 → 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) |
| 23 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 24 | 22 23 | mpbid | ⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 26 | 25 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 27 | 26 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋 ⊆ 𝐴 ) |
| 28 | 18 27 | ssexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋 ∈ V ) |
| 29 | 28 | difexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∖ 𝑌 ) ∈ V ) |
| 30 | 25 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
| 31 | 30 | simpld | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊 ‘ 𝑋 ) We 𝑋 ) |
| 32 | wefr | ⊢ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) | |
| 33 | 31 32 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) |
| 34 | difssd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 ) | |
| 35 | fri | ⊢ ( ( ( ( 𝑋 ∖ 𝑌 ) ∈ V ∧ ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) ∧ ( ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑌 ) ≠ ∅ ) ) → ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) | |
| 36 | 35 | expr | ⊢ ( ( ( ( 𝑋 ∖ 𝑌 ) ∈ V ∧ ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) ∧ ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑌 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) ) |
| 37 | 29 33 34 36 | syl21anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ∖ 𝑌 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) ) |
| 38 | ssdif0 | ⊢ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) = ∅ ) | |
| 39 | indif1 | ⊢ ( ( 𝑋 ∖ 𝑌 ) ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) | |
| 40 | 39 | eqeq1i | ⊢ ( ( ( 𝑋 ∖ 𝑌 ) ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) = ∅ ) |
| 41 | disj | ⊢ ( ( ( 𝑋 ∖ 𝑌 ) ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) | |
| 42 | vex | ⊢ 𝑤 ∈ V | |
| 43 | 42 | eliniseg | ⊢ ( 𝑧 ∈ V → ( 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ↔ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) ) |
| 44 | 43 | elv | ⊢ ( 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ↔ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
| 45 | 44 | notbii | ⊢ ( ¬ 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ↔ ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
| 46 | 45 | ralbii | ⊢ ( ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
| 47 | 41 46 | bitri | ⊢ ( ( ( 𝑋 ∖ 𝑌 ) ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
| 48 | 38 40 47 | 3bitr2i | ⊢ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
| 49 | cnvimass | ⊢ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ dom ( 𝑊 ‘ 𝑋 ) | |
| 50 | 26 | simprd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 51 | dmss | ⊢ ( ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) ) |
| 53 | dmxpid | ⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 | |
| 54 | 52 53 | sseqtrdi | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ 𝑋 ) |
| 55 | 49 54 | sstrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑋 ) |
| 56 | sseqin2 | ⊢ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑋 ↔ ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) | |
| 57 | 55 56 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
| 58 | 57 | sseq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) |
| 59 | 48 58 | bitr3id | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) |
| 60 | 59 | rexbidv | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) |
| 61 | eldifn | ⊢ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) → ¬ 𝑧 ∈ 𝑌 ) | |
| 62 | 61 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ¬ 𝑧 ∈ 𝑌 ) |
| 63 | eleq1w | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑌 ↔ 𝑧 ∈ 𝑌 ) ) | |
| 64 | 63 | notbid | ⊢ ( 𝑤 = 𝑧 → ( ¬ 𝑤 ∈ 𝑌 ↔ ¬ 𝑧 ∈ 𝑌 ) ) |
| 65 | 62 64 | syl5ibrcom | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤 = 𝑧 → ¬ 𝑤 ∈ 𝑌 ) ) |
| 66 | 65 | con2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤 ∈ 𝑌 → ¬ 𝑤 = 𝑧 ) ) |
| 67 | 66 | imp | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ¬ 𝑤 = 𝑧 ) |
| 68 | 62 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ¬ 𝑧 ∈ 𝑌 ) |
| 69 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) | |
| 70 | 69 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) |
| 71 | 70 | breqd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 𝑅 𝑤 ↔ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ) ) |
| 72 | eldifi | ⊢ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑧 ∈ 𝑋 ) | |
| 73 | 72 | ad2antrl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑧 ∈ 𝑋 ) |
| 74 | 73 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑧 ∈ 𝑋 ) |
| 75 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ 𝑌 ) | |
| 76 | brxp | ⊢ ( 𝑧 ( 𝑋 × 𝑌 ) 𝑤 ↔ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑌 ) ) | |
| 77 | 74 75 76 | sylanbrc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑧 ( 𝑋 × 𝑌 ) 𝑤 ) |
| 78 | brin | ⊢ ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ↔ ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ∧ 𝑧 ( 𝑋 × 𝑌 ) 𝑤 ) ) | |
| 79 | 78 | rbaib | ⊢ ( 𝑧 ( 𝑋 × 𝑌 ) 𝑤 → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) |
| 80 | 77 79 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) |
| 81 | 71 80 | bitrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 𝑅 𝑤 ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) |
| 82 | 1 2 | fpwwe2lem2 | ⊢ ( 𝜑 → ( 𝑌 𝑊 𝑅 ↔ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 83 | 82 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑌 𝑊 𝑅 ) → ( ( 𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 84 | 83 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 85 | 84 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ) |
| 86 | 85 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) |
| 87 | 86 | ad3antrrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) |
| 88 | 87 | ssbrd | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 𝑅 𝑤 → 𝑧 ( 𝑌 × 𝑌 ) 𝑤 ) ) |
| 89 | brxp | ⊢ ( 𝑧 ( 𝑌 × 𝑌 ) 𝑤 ↔ ( 𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) | |
| 90 | 89 | simplbi | ⊢ ( 𝑧 ( 𝑌 × 𝑌 ) 𝑤 → 𝑧 ∈ 𝑌 ) |
| 91 | 88 90 | syl6 | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 𝑅 𝑤 → 𝑧 ∈ 𝑌 ) ) |
| 92 | 81 91 | sylbird | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 → 𝑧 ∈ 𝑌 ) ) |
| 93 | 68 92 | mtod | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) |
| 94 | 31 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑊 ‘ 𝑋 ) We 𝑋 ) |
| 95 | weso | ⊢ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 → ( 𝑊 ‘ 𝑋 ) Or 𝑋 ) | |
| 96 | 94 95 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑊 ‘ 𝑋 ) Or 𝑋 ) |
| 97 | 13 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
| 98 | 97 | sselda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ 𝑋 ) |
| 99 | sotric | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) Or 𝑋 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ¬ ( 𝑤 = 𝑧 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) ) | |
| 100 | ioran | ⊢ ( ¬ ( 𝑤 = 𝑧 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) | |
| 101 | 99 100 | bitrdi | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) Or 𝑋 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) ) |
| 102 | 96 98 74 101 | syl12anc | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) ) |
| 103 | 67 93 102 | mpbir2and | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
| 104 | 103 44 | sylibr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
| 105 | 104 | ex | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤 ∈ 𝑌 → 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) |
| 106 | 105 | ssrdv | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 ⊆ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
| 107 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) | |
| 108 | 106 107 | eqssd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
| 109 | in32 | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) | |
| 110 | simplrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) | |
| 111 | 110 | ineq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) ) |
| 112 | 86 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) |
| 113 | dfss2 | ⊢ ( 𝑅 ⊆ ( 𝑌 × 𝑌 ) ↔ ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 ) | |
| 114 | 112 113 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 ) |
| 115 | 111 114 | eqtr3d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 ) |
| 116 | inss2 | ⊢ ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑌 × 𝑌 ) | |
| 117 | xpss1 | ⊢ ( 𝑌 ⊆ 𝑋 → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) ) | |
| 118 | 97 117 | syl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 119 | 116 118 | sstrid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑋 × 𝑌 ) ) |
| 120 | dfss2 | ⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑋 × 𝑌 ) ↔ ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ) | |
| 121 | 119 120 | sylib | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ) |
| 122 | 109 115 121 | 3eqtr3a | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ) |
| 123 | 108 | sqxpeqd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 × 𝑌 ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) |
| 124 | 123 | ineq2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) |
| 125 | 122 124 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) |
| 126 | 108 125 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 𝐹 𝑅 ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) ) |
| 127 | 18 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝐴 ∈ 𝑉 ) |
| 128 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) |
| 129 | 128 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) |
| 130 | 1 127 129 | fpwwe2lem3 | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) = 𝑧 ) |
| 131 | 73 130 | mpdan | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) = 𝑧 ) |
| 132 | 126 131 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 𝐹 𝑅 ) = 𝑧 ) |
| 133 | 132 62 | eqneltrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) |
| 134 | 133 | rexlimdvaa | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) |
| 135 | 60 134 | sylbid | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) |
| 136 | 37 135 | syld | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ∖ 𝑌 ) ≠ ∅ → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) |
| 137 | 136 | necon4ad | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 → ( 𝑋 ∖ 𝑌 ) = ∅ ) ) |
| 138 | 16 137 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∖ 𝑌 ) = ∅ ) |
| 139 | ssdif0 | ⊢ ( 𝑋 ⊆ 𝑌 ↔ ( 𝑋 ∖ 𝑌 ) = ∅ ) | |
| 140 | 138 139 | sylibr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋 ⊆ 𝑌 ) |
| 141 | 140 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) → 𝑋 ⊆ 𝑌 ) ) |
| 142 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 143 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 𝑊 𝑅 ) | |
| 144 | 1 17 142 128 143 | fpwwe2lem9 | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑊 ‘ 𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) ∨ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ) |
| 145 | 15 141 144 | mpjaod | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 ⊆ 𝑌 ) |
| 146 | 13 145 | eqssd | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 = 𝑋 ) |
| 147 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → Fun 𝑊 ) |
| 148 | 146 143 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 𝑊 𝑅 ) |
| 149 | funbrfv | ⊢ ( Fun 𝑊 → ( 𝑋 𝑊 𝑅 → ( 𝑊 ‘ 𝑋 ) = 𝑅 ) ) | |
| 150 | 147 148 149 | sylc | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑊 ‘ 𝑋 ) = 𝑅 ) |
| 151 | 150 | eqcomd | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑅 = ( 𝑊 ‘ 𝑋 ) ) |
| 152 | 146 151 | jca | ⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) ) |
| 153 | 152 | ex | ⊢ ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) → ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) ) ) |
| 154 | 1 2 3 4 | fpwwe2lem12 | ⊢ ( 𝜑 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
| 155 | 22 154 | jca | ⊢ ( 𝜑 → ( 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ∧ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
| 156 | breq12 | ⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( 𝑌 𝑊 𝑅 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) | |
| 157 | oveq12 | ⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( 𝑌 𝐹 𝑅 ) = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) | |
| 158 | simpl | ⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → 𝑌 = 𝑋 ) | |
| 159 | 157 158 | eleq12d | ⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
| 160 | 156 159 | anbi12d | ⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ∧ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) ) |
| 161 | 155 160 | syl5ibrcom | ⊢ ( 𝜑 → ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ) |
| 162 | 153 161 | impbid | ⊢ ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) ) ) |