This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzadd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumzadd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzadd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzadd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzadd.fn | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| gsumzadd.hn | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | ||
| gsumzaddlem.w | ⊢ 𝑊 = ( ( 𝐹 ∪ 𝐻 ) supp 0 ) | ||
| gsumzaddlem.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzaddlem.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzaddlem.1 | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzaddlem.2 | ⊢ ( 𝜑 → ran 𝐻 ⊆ ( 𝑍 ‘ ran 𝐻 ) ) | ||
| gsumzaddlem.3 | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ∘f + 𝐻 ) ) ) | ||
| gsumzaddlem.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) | ||
| Assertion | gsumzaddlem | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzadd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumzadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumzadd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | gsumzadd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | gsumzadd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumzadd.fn | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 8 | gsumzadd.hn | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | |
| 9 | gsumzaddlem.w | ⊢ 𝑊 = ( ( 𝐹 ∪ 𝐻 ) supp 0 ) | |
| 10 | gsumzaddlem.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 11 | gsumzaddlem.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 12 | gsumzaddlem.1 | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 13 | gsumzaddlem.2 | ⊢ ( 𝜑 → ran 𝐻 ⊆ ( 𝑍 ‘ ran 𝐻 ) ) | |
| 14 | gsumzaddlem.3 | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ∘f + 𝐻 ) ) ) | |
| 15 | gsumzaddlem.4 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) | |
| 16 | 1 2 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 17 | 5 16 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 18 | 1 3 2 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 0 ∈ 𝐵 ) → ( 0 + 0 ) = 0 ) |
| 19 | 5 17 18 | syl2anc | ⊢ ( 𝜑 → ( 0 + 0 ) = 0 ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 0 + 0 ) = 0 ) |
| 21 | 2 | fvexi | ⊢ 0 ∈ V |
| 22 | 21 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 23 | 11 6 | fexd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 24 | 23 | suppun | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) |
| 25 | 24 9 | sseqtrrdi | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝑊 ) |
| 26 | 10 6 22 25 | gsumcllem | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) ) |
| 28 | 2 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 29 | 5 6 28 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 31 | 27 30 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg 𝐹 ) = 0 ) |
| 32 | 10 6 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 33 | 32 | suppun | ⊢ ( 𝜑 → ( 𝐻 supp 0 ) ⊆ ( ( 𝐻 ∪ 𝐹 ) supp 0 ) ) |
| 34 | uncom | ⊢ ( 𝐹 ∪ 𝐻 ) = ( 𝐻 ∪ 𝐹 ) | |
| 35 | 34 | oveq1i | ⊢ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) = ( ( 𝐻 ∪ 𝐹 ) supp 0 ) |
| 36 | 33 35 | sseqtrrdi | ⊢ ( 𝜑 → ( 𝐻 supp 0 ) ⊆ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) |
| 37 | 36 9 | sseqtrrdi | ⊢ ( 𝜑 → ( 𝐻 supp 0 ) ⊆ 𝑊 ) |
| 38 | 11 6 22 37 | gsumcllem | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐻 = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 39 | 38 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg 𝐻 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) ) |
| 40 | 39 30 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg 𝐻 ) = 0 ) |
| 41 | 31 40 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) = ( 0 + 0 ) ) |
| 42 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐴 ∈ 𝑉 ) |
| 43 | 17 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ 𝐴 ) → 0 ∈ 𝐵 ) |
| 44 | 42 43 43 26 38 | offval2 | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐹 ∘f + 𝐻 ) = ( 𝑥 ∈ 𝐴 ↦ ( 0 + 0 ) ) ) |
| 45 | 20 | mpteq2dv | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝑥 ∈ 𝐴 ↦ ( 0 + 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 46 | 44 45 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐹 ∘f + 𝐻 ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 47 | 46 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) ) |
| 48 | 47 30 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = 0 ) |
| 49 | 20 41 48 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |
| 50 | 49 | ex | ⊢ ( 𝜑 → ( 𝑊 = ∅ → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) ) |
| 51 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐺 ∈ Mnd ) |
| 52 | 1 3 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) → ( 𝑧 + 𝑤 ) ∈ 𝐵 ) |
| 53 | 52 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐵 ) |
| 54 | 51 53 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 + 𝑤 ) ∈ 𝐵 ) |
| 55 | 54 | caovclg | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 56 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 57 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 58 | 56 57 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 59 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 60 | f1of1 | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1→ 𝑊 ) | |
| 61 | 60 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1→ 𝑊 ) |
| 62 | suppssdm | ⊢ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ⊆ dom ( 𝐹 ∪ 𝐻 ) | |
| 63 | 62 | a1i | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ⊆ dom ( 𝐹 ∪ 𝐻 ) ) |
| 64 | 9 | a1i | ⊢ ( 𝜑 → 𝑊 = ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) |
| 65 | dmun | ⊢ dom ( 𝐹 ∪ 𝐻 ) = ( dom 𝐹 ∪ dom 𝐻 ) | |
| 66 | 10 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 67 | 11 | fdmd | ⊢ ( 𝜑 → dom 𝐻 = 𝐴 ) |
| 68 | 66 67 | uneq12d | ⊢ ( 𝜑 → ( dom 𝐹 ∪ dom 𝐻 ) = ( 𝐴 ∪ 𝐴 ) ) |
| 69 | unidm | ⊢ ( 𝐴 ∪ 𝐴 ) = 𝐴 | |
| 70 | 68 69 | eqtrdi | ⊢ ( 𝜑 → ( dom 𝐹 ∪ dom 𝐻 ) = 𝐴 ) |
| 71 | 65 70 | eqtr2id | ⊢ ( 𝜑 → 𝐴 = dom ( 𝐹 ∪ 𝐻 ) ) |
| 72 | 63 64 71 | 3sstr4d | ⊢ ( 𝜑 → 𝑊 ⊆ 𝐴 ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑊 ⊆ 𝐴 ) |
| 74 | f1ss | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1→ 𝑊 ∧ 𝑊 ⊆ 𝐴 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐴 ) | |
| 75 | 61 73 74 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐴 ) |
| 76 | f1f | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) | |
| 77 | 75 76 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 78 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) | |
| 79 | 59 77 78 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) |
| 80 | 79 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 81 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 82 | fco | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) → ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) | |
| 83 | 81 77 82 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ) |
| 84 | 83 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 85 | 59 | ffnd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐹 Fn 𝐴 ) |
| 86 | 81 | ffnd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐻 Fn 𝐴 ) |
| 87 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐴 ∈ 𝑉 ) |
| 88 | ovexd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 1 ... ( ♯ ‘ 𝑊 ) ) ∈ V ) | |
| 89 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 90 | 85 86 77 87 87 88 89 | ofco | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) = ( ( 𝐹 ∘ 𝑓 ) ∘f + ( 𝐻 ∘ 𝑓 ) ) ) |
| 91 | 90 | fveq1d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ( 𝐹 ∘ 𝑓 ) ∘f + ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑘 ) ) |
| 92 | 91 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ( 𝐹 ∘ 𝑓 ) ∘f + ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑘 ) ) |
| 93 | fnfco | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑓 ) Fn ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 94 | 85 77 93 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐹 ∘ 𝑓 ) Fn ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 95 | fnfco | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) → ( 𝐻 ∘ 𝑓 ) Fn ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 96 | 86 77 95 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐻 ∘ 𝑓 ) Fn ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 97 | inidm | ⊢ ( ( 1 ... ( ♯ ‘ 𝑊 ) ) ∩ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) = ( 1 ... ( ♯ ‘ 𝑊 ) ) | |
| 98 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ) | |
| 99 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) = ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) ) | |
| 100 | 94 96 88 88 97 98 99 | ofval | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝐹 ∘ 𝑓 ) ∘f + ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑘 ) = ( ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) + ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) ) ) |
| 101 | 92 100 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) + ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) ) ) |
| 102 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐺 ∈ Mnd ) |
| 103 | elfzouz | ⊢ ( 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 104 | 103 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
| 105 | elfzouz2 | ⊢ ( 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) | |
| 106 | 105 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝑛 ) ) |
| 107 | fzss2 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝑛 ) → ( 1 ... 𝑛 ) ⊆ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 108 | 106 107 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 1 ... 𝑛 ) ⊆ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 109 | 108 | sselda | ⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 110 | 80 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 111 | 109 110 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 112 | 1 3 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑘 + 𝑥 ) ∈ 𝐵 ) |
| 113 | 112 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑘 + 𝑥 ) ∈ 𝐵 ) |
| 114 | 102 113 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑘 + 𝑥 ) ∈ 𝐵 ) |
| 115 | 104 111 114 | seqcl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ 𝐵 ) |
| 116 | 84 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 117 | 109 116 | syldan | ⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝐵 ) |
| 118 | 104 117 114 | seqcl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ 𝐵 ) |
| 119 | fzofzp1 | ⊢ ( 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝑛 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 120 | ffvelcdm | ⊢ ( ( ( 𝐹 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐵 ) | |
| 121 | 79 119 120 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐵 ) |
| 122 | ffvelcdm | ⊢ ( ( ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐵 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐵 ) | |
| 123 | 83 119 122 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ∈ 𝐵 ) |
| 124 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 125 | 77 119 124 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ) |
| 126 | fveq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ ( 𝑛 + 1 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 127 | 126 | eleq1d | ⊢ ( 𝑘 = ( 𝑓 ‘ ( 𝑛 + 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ↔ ( 𝐹 ‘ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ) ) |
| 128 | 15 | expr | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) ) |
| 129 | 128 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
| 130 | 129 | ex | ⊢ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) ) |
| 131 | 130 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) ) |
| 132 | 131 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) ) |
| 133 | imassrn | ⊢ ( 𝑓 “ ( 1 ... 𝑛 ) ) ⊆ ran 𝑓 | |
| 134 | 77 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 135 | 134 | frnd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ran 𝑓 ⊆ 𝐴 ) |
| 136 | 133 135 | sstrid | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 “ ( 1 ... 𝑛 ) ) ⊆ 𝐴 ) |
| 137 | vex | ⊢ 𝑓 ∈ V | |
| 138 | 137 | imaex | ⊢ ( 𝑓 “ ( 1 ... 𝑛 ) ) ∈ V |
| 139 | sseq1 | ⊢ ( 𝑥 = ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑓 “ ( 1 ... 𝑛 ) ) ⊆ 𝐴 ) ) | |
| 140 | difeq2 | ⊢ ( 𝑥 = ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) | |
| 141 | reseq2 | ⊢ ( 𝑥 = ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( 𝐻 ↾ 𝑥 ) = ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) | |
| 142 | 141 | oveq2d | ⊢ ( 𝑥 = ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) = ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) ) |
| 143 | 142 | sneqd | ⊢ ( 𝑥 = ( 𝑓 “ ( 1 ... 𝑛 ) ) → { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } = { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) |
| 144 | 143 | fveq2d | ⊢ ( 𝑥 = ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) = ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ) |
| 145 | 144 | eleq2d | ⊢ ( 𝑥 = ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ↔ ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ) ) |
| 146 | 140 145 | raleqbidv | ⊢ ( 𝑥 = ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ↔ ∀ 𝑘 ∈ ( 𝐴 ∖ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ) ) |
| 147 | 139 146 | imbi12d | ⊢ ( 𝑥 = ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( ( 𝑥 ⊆ 𝐴 → ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) ↔ ( ( 𝑓 “ ( 1 ... 𝑛 ) ) ⊆ 𝐴 → ∀ 𝑘 ∈ ( 𝐴 ∖ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ) ) ) |
| 148 | 138 147 | spcv | ⊢ ( ∀ 𝑥 ( 𝑥 ⊆ 𝐴 → ∀ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) → ( ( 𝑓 “ ( 1 ... 𝑛 ) ) ⊆ 𝐴 → ∀ 𝑘 ∈ ( 𝐴 ∖ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ) ) |
| 149 | 132 136 148 | sylc | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑘 ∈ ( 𝐴 ∖ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ) |
| 150 | ffvelcdm | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ‘ ( 𝑛 + 1 ) ) ∈ 𝐴 ) | |
| 151 | 77 119 150 | syl2an | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ‘ ( 𝑛 + 1 ) ) ∈ 𝐴 ) |
| 152 | fzp1nel | ⊢ ¬ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑛 ) | |
| 153 | 75 | adantr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐴 ) |
| 154 | 119 | adantl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑛 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 155 | f1elima | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐴 ∧ ( 𝑛 + 1 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 1 ... 𝑛 ) ⊆ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑓 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑓 “ ( 1 ... 𝑛 ) ) ↔ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) | |
| 156 | 153 154 108 155 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑓 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑓 “ ( 1 ... 𝑛 ) ) ↔ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑛 ) ) ) |
| 157 | 152 156 | mtbiri | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ¬ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) |
| 158 | 151 157 | eldifd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ‘ ( 𝑛 + 1 ) ) ∈ ( 𝐴 ∖ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) |
| 159 | 127 149 158 | rspcdva | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ) |
| 160 | 125 159 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ) |
| 161 | 138 | a1i | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 “ ( 1 ... 𝑛 ) ) ∈ V ) |
| 162 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 163 | 162 136 | fssresd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) : ( 𝑓 “ ( 1 ... 𝑛 ) ) ⟶ 𝐵 ) |
| 164 | 13 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ran 𝐻 ⊆ ( 𝑍 ‘ ran 𝐻 ) ) |
| 165 | resss | ⊢ ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ⊆ 𝐻 | |
| 166 | 165 | rnssi | ⊢ ran ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ⊆ ran 𝐻 |
| 167 | 4 | cntzidss | ⊢ ( ( ran 𝐻 ⊆ ( 𝑍 ‘ ran 𝐻 ) ∧ ran ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ⊆ ran 𝐻 ) → ran ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ⊆ ( 𝑍 ‘ ran ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) ) |
| 168 | 164 166 167 | sylancl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ran ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ⊆ ( 𝑍 ‘ ran ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) ) |
| 169 | 104 57 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑛 ∈ ℕ ) |
| 170 | f1ores | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1→ 𝐴 ∧ ( 1 ... 𝑛 ) ⊆ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –1-1-onto→ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) | |
| 171 | 153 108 170 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –1-1-onto→ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) |
| 172 | f1of1 | ⊢ ( ( 𝑓 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –1-1-onto→ ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –1-1→ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) | |
| 173 | 171 172 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –1-1→ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) |
| 174 | suppssdm | ⊢ ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) supp 0 ) ⊆ dom ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) | |
| 175 | dmres | ⊢ dom ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) = ( ( 𝑓 “ ( 1 ... 𝑛 ) ) ∩ dom 𝐻 ) | |
| 176 | 175 | a1i | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → dom ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) = ( ( 𝑓 “ ( 1 ... 𝑛 ) ) ∩ dom 𝐻 ) ) |
| 177 | 174 176 | sseqtrid | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) supp 0 ) ⊆ ( ( 𝑓 “ ( 1 ... 𝑛 ) ) ∩ dom 𝐻 ) ) |
| 178 | inss1 | ⊢ ( ( 𝑓 “ ( 1 ... 𝑛 ) ) ∩ dom 𝐻 ) ⊆ ( 𝑓 “ ( 1 ... 𝑛 ) ) | |
| 179 | df-ima | ⊢ ( 𝑓 “ ( 1 ... 𝑛 ) ) = ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) | |
| 180 | 179 | a1i | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 “ ( 1 ... 𝑛 ) ) = ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) |
| 181 | 178 180 | sseqtrid | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑓 “ ( 1 ... 𝑛 ) ) ∩ dom 𝐻 ) ⊆ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) |
| 182 | 177 181 | sstrd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) supp 0 ) ⊆ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) |
| 183 | eqid | ⊢ ( ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) supp 0 ) = ( ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) supp 0 ) | |
| 184 | 1 2 3 4 102 161 163 168 169 173 182 183 | gsumval3 | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) = ( seq 1 ( + , ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) ‘ 𝑛 ) ) |
| 185 | 179 | eqimss2i | ⊢ ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( 𝑓 “ ( 1 ... 𝑛 ) ) |
| 186 | cores | ⊢ ( ran ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ⊆ ( 𝑓 “ ( 1 ... 𝑛 ) ) → ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) = ( 𝐻 ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) | |
| 187 | 185 186 | ax-mp | ⊢ ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) = ( 𝐻 ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) |
| 188 | resco | ⊢ ( ( 𝐻 ∘ 𝑓 ) ↾ ( 1 ... 𝑛 ) ) = ( 𝐻 ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) | |
| 189 | 187 188 | eqtr4i | ⊢ ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) = ( ( 𝐻 ∘ 𝑓 ) ↾ ( 1 ... 𝑛 ) ) |
| 190 | 189 | fveq1i | ⊢ ( ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) = ( ( ( 𝐻 ∘ 𝑓 ) ↾ ( 1 ... 𝑛 ) ) ‘ 𝑘 ) |
| 191 | fvres | ⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → ( ( ( 𝐻 ∘ 𝑓 ) ↾ ( 1 ... 𝑛 ) ) ‘ 𝑘 ) = ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) ) | |
| 192 | 190 191 | eqtrid | ⊢ ( 𝑘 ∈ ( 1 ... 𝑛 ) → ( ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) ) |
| 193 | 192 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑛 ) ) → ( ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) = ( ( 𝐻 ∘ 𝑓 ) ‘ 𝑘 ) ) |
| 194 | 104 193 | seqfveq | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( seq 1 ( + , ( ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ∘ ( 𝑓 ↾ ( 1 ... 𝑛 ) ) ) ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ) |
| 195 | 184 194 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) = ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) ) |
| 196 | fvex | ⊢ ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ V | |
| 197 | 196 | elsn | ⊢ ( ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ↔ ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) = ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) ) |
| 198 | 195 197 | sylibr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) |
| 199 | 3 4 | cntzi | ⊢ ( ( ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) ∧ ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ∈ { ( 𝐺 Σg ( 𝐻 ↾ ( 𝑓 “ ( 1 ... 𝑛 ) ) ) ) } ) → ( ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) + ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ) = ( ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) + ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 200 | 160 198 199 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) + ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ) = ( ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) + ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 201 | 200 | eqcomd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) + ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) + ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ) ) |
| 202 | 1 3 102 115 118 121 123 201 | mnd4g | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑛 ∈ ( 1 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑛 ) + ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) ) + ( ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) + ( ( 𝐻 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑛 ) + ( ( 𝐹 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ) + ( ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑛 ) + ( ( 𝐻 ∘ 𝑓 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 203 | 55 55 58 80 84 101 202 | seqcaopr3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( seq 1 ( + , ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) + ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 204 | 54 59 81 87 87 89 | off | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐹 ∘f + 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
| 205 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ran ( 𝐹 ∘f + 𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ∘f + 𝐻 ) ) ) |
| 206 | 51 113 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑘 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝑘 + 𝑥 ) ∈ 𝐵 ) |
| 207 | 206 59 81 87 87 89 | off | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐹 ∘f + 𝐻 ) : 𝐴 ⟶ 𝐵 ) |
| 208 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ran 𝑓 ) → 𝑥 ∈ 𝐴 ) | |
| 209 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 210 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) = ( 𝐻 ‘ 𝑥 ) ) | |
| 211 | 85 86 87 87 89 209 210 | ofval | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ∘f + 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) |
| 212 | 208 211 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ran 𝑓 ) ) → ( ( 𝐹 ∘f + 𝐻 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) |
| 213 | 24 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) |
| 214 | f1ofo | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –onto→ 𝑊 ) | |
| 215 | forn | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –onto→ 𝑊 → ran 𝑓 = 𝑊 ) | |
| 216 | 214 215 | syl | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → ran 𝑓 = 𝑊 ) |
| 217 | 216 9 | eqtrdi | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → ran 𝑓 = ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) |
| 218 | 217 | sseq2d | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → ( ( 𝐹 supp 0 ) ⊆ ran 𝑓 ↔ ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) ) |
| 219 | 218 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ( 𝐹 supp 0 ) ⊆ ran 𝑓 ↔ ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) ) |
| 220 | 213 219 | mpbird | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝑓 ) |
| 221 | 21 | a1i | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 0 ∈ V ) |
| 222 | 59 220 87 221 | suppssr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ran 𝑓 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 223 | 33 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐻 supp 0 ) ⊆ ( ( 𝐻 ∪ 𝐹 ) supp 0 ) ) |
| 224 | 223 35 | sseqtrrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐻 supp 0 ) ⊆ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) |
| 225 | 217 | sseq2d | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → ( ( 𝐻 supp 0 ) ⊆ ran 𝑓 ↔ ( 𝐻 supp 0 ) ⊆ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) ) |
| 226 | 225 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ( 𝐻 supp 0 ) ⊆ ran 𝑓 ↔ ( 𝐻 supp 0 ) ⊆ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ) ) |
| 227 | 224 226 | mpbird | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐻 supp 0 ) ⊆ ran 𝑓 ) |
| 228 | 81 227 87 221 | suppssr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ran 𝑓 ) ) → ( 𝐻 ‘ 𝑥 ) = 0 ) |
| 229 | 222 228 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ran 𝑓 ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) = ( 0 + 0 ) ) |
| 230 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ran 𝑓 ) ) → ( 0 + 0 ) = 0 ) |
| 231 | 212 229 230 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ran 𝑓 ) ) → ( ( 𝐹 ∘f + 𝐻 ) ‘ 𝑥 ) = 0 ) |
| 232 | 207 231 | suppss | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ( 𝐹 ∘f + 𝐻 ) supp 0 ) ⊆ ran 𝑓 ) |
| 233 | ovex | ⊢ ( 𝐹 ∘f + 𝐻 ) ∈ V | |
| 234 | 233 137 | coex | ⊢ ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) ∈ V |
| 235 | suppimacnv | ⊢ ( ( ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) ∈ V ∧ 0 ∈ V ) → ( ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) supp 0 ) = ( ◡ ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) “ ( V ∖ { 0 } ) ) ) | |
| 236 | 235 | eqcomd | ⊢ ( ( ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) ∈ V ∧ 0 ∈ V ) → ( ◡ ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) “ ( V ∖ { 0 } ) ) = ( ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) supp 0 ) ) |
| 237 | 234 21 236 | mp2an | ⊢ ( ◡ ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) “ ( V ∖ { 0 } ) ) = ( ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) supp 0 ) |
| 238 | 1 2 3 4 51 87 204 205 56 75 232 237 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( seq 1 ( + , ( ( 𝐹 ∘f + 𝐻 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 239 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 240 | eqid | ⊢ ( ( 𝐹 ∘ 𝑓 ) supp 0 ) = ( ( 𝐹 ∘ 𝑓 ) supp 0 ) | |
| 241 | 1 2 3 4 51 87 59 239 56 75 220 240 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 242 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ran 𝐻 ⊆ ( 𝑍 ‘ ran 𝐻 ) ) |
| 243 | eqid | ⊢ ( ( 𝐻 ∘ 𝑓 ) supp 0 ) = ( ( 𝐻 ∘ 𝑓 ) supp 0 ) | |
| 244 | 1 2 3 4 51 87 81 242 56 75 227 243 | gsumval3 | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐺 Σg 𝐻 ) = ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 245 | 241 244 | oveq12d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) = ( ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) + ( seq 1 ( + , ( 𝐻 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 246 | 203 238 245 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |
| 247 | 246 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) ) |
| 248 | 247 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) ) |
| 249 | 248 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) ) |
| 250 | 7 8 | fsuppun | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐻 ) supp 0 ) ∈ Fin ) |
| 251 | 9 250 | eqeltrid | ⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 252 | fz1f1o | ⊢ ( 𝑊 ∈ Fin → ( 𝑊 = ∅ ∨ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) | |
| 253 | 251 252 | syl | ⊢ ( 𝜑 → ( 𝑊 = ∅ ∨ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) |
| 254 | 50 249 253 | mpjaod | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |