This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019) (Proof shortened by SN, 5-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppss.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| suppss.n | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) | ||
| Assertion | suppss | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppss.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | suppss.n | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) | |
| 3 | 1 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 4 | 3 | adantl | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝐹 Fn 𝐴 ) |
| 5 | simpll | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝐹 ∈ V ) | |
| 6 | simplr | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝑍 ∈ V ) | |
| 7 | elsuppfng | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) | |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) ) ) |
| 9 | eldif | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ↔ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) | |
| 10 | 2 | adantll | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 11 | 9 10 | sylan2br | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ ( 𝑘 ∈ 𝐴 ∧ ¬ 𝑘 ∈ 𝑊 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 12 | 11 | expr | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( ¬ 𝑘 ∈ 𝑊 → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) ) |
| 13 | 12 | necon1ad | ⊢ ( ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 → 𝑘 ∈ 𝑊 ) ) |
| 14 | 13 | expimpd | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝑘 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑘 ) ≠ 𝑍 ) → 𝑘 ∈ 𝑊 ) ) |
| 15 | 8 14 | sylbid | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝑘 ∈ ( 𝐹 supp 𝑍 ) → 𝑘 ∈ 𝑊 ) ) |
| 16 | 15 | ssrdv | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) |
| 17 | 16 | ex | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) ) |
| 18 | supp0prc | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) | |
| 19 | 0ss | ⊢ ∅ ⊆ 𝑊 | |
| 20 | 18 19 | eqsstrdi | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) |
| 21 | 20 | a1d | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) ) |
| 22 | 17 21 | pm2.61i | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) |