This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the elements of S commute, the elements of a subset T also commute. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cntzmhm.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| Assertion | cntzidss | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzmhm.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 2 | simpr | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑆 ) | |
| 3 | simpl | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 4 1 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 6 | 3 5 | sstrdi | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 | 4 1 | cntz2ss | ⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| 8 | 6 7 | sylancom | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| 9 | 3 8 | sstrd | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| 10 | 2 9 | sstrd | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑇 ) ) |