This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndlrid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mndlrid.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mndlrid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 0 + 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndlrid.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mndlrid.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | mndlrid.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 4 | 1 2 3 | mndlrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( ( 0 + 𝑋 ) = 𝑋 ∧ ( 𝑋 + 0 ) = 𝑋 ) ) |
| 5 | 4 | simpld | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ) → ( 0 + 𝑋 ) = 𝑋 ) |