This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mndcl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mnd4g.1 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| mnd4g.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| mnd4g.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| mnd4g.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| mnd4g.5 | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | ||
| mnd4g.6 | ⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) | ||
| Assertion | mnd4g | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mndcl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | mnd4g.1 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 4 | mnd4g.2 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | mnd4g.3 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | mnd4g.4 | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 7 | mnd4g.5 | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | |
| 8 | mnd4g.6 | ⊢ ( 𝜑 → ( 𝑌 + 𝑍 ) = ( 𝑍 + 𝑌 ) ) | |
| 9 | 1 2 3 5 6 7 8 | mnd12g | ⊢ ( 𝜑 → ( 𝑌 + ( 𝑍 + 𝑊 ) ) = ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) |
| 10 | 9 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) = ( 𝑋 + ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) ) |
| 11 | 1 2 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
| 12 | 3 6 7 11 | syl3anc | ⊢ ( 𝜑 → ( 𝑍 + 𝑊 ) ∈ 𝐵 ) |
| 13 | 1 2 | mndass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑍 + 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) ) |
| 14 | 3 4 5 12 13 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( 𝑋 + ( 𝑌 + ( 𝑍 + 𝑊 ) ) ) ) |
| 15 | 1 2 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 + 𝑊 ) ∈ 𝐵 ) |
| 16 | 3 5 7 15 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 + 𝑊 ) ∈ 𝐵 ) |
| 17 | 1 2 | mndass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ ( 𝑌 + 𝑊 ) ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) = ( 𝑋 + ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) ) |
| 18 | 3 4 6 16 17 | syl13anc | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) = ( 𝑋 + ( 𝑍 + ( 𝑌 + 𝑊 ) ) ) ) |
| 19 | 10 14 18 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + ( 𝑍 + 𝑊 ) ) = ( ( 𝑋 + 𝑍 ) + ( 𝑌 + 𝑊 ) ) ) |