This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a restriction. Exercise 14 of TakeutiZaring p. 25. (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmres | ⊢ dom ( 𝐴 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | 1 | eldm2 | ⊢ ( 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ) |
| 3 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 4 | opelresi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ↔ ∃ 𝑦 ( 𝑥 ∈ 𝐵 ∧ 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 7 | 1 | eldm2 | ⊢ ( 𝑥 ∈ dom 𝐴 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) |
| 8 | 7 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴 ) ↔ ( 𝑥 ∈ 𝐵 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ 𝐴 ) ) |
| 9 | 3 6 8 | 3bitr4i | ⊢ ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( 𝐴 ↾ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴 ) ) |
| 10 | 2 9 | bitr2i | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 ∈ dom 𝐴 ) ↔ 𝑥 ∈ dom ( 𝐴 ↾ 𝐵 ) ) |
| 11 | 10 | ineqri | ⊢ ( 𝐵 ∩ dom 𝐴 ) = dom ( 𝐴 ↾ 𝐵 ) |
| 12 | 11 | eqcomi | ⊢ dom ( 𝐴 ↾ 𝐵 ) = ( 𝐵 ∩ dom 𝐴 ) |