This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the group sum operation over an arbitrary finite set. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumval3.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumval3.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumval3.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumval3.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumval3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumval3.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumval3.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumval3.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| gsumval3.h | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) | ||
| gsumval3.n | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) | ||
| gsumval3.w | ⊢ 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) | ||
| Assertion | gsumval3 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval3.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumval3.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumval3.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumval3.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | gsumval3.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | gsumval3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumval3.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumval3.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 9 | gsumval3.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 10 | gsumval3.h | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) | |
| 11 | gsumval3.n | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) | |
| 12 | gsumval3.w | ⊢ 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) | |
| 13 | 2 | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 14 | 5 6 13 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| 16 | 7 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 | f1f | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) | |
| 19 | 10 18 | syl | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 21 | f1f1orn | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) | |
| 22 | 10 21 | syl | ⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) |
| 24 | f1ocnv | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 → ◡ 𝐻 : ran 𝐻 –1-1-onto→ ( 1 ... 𝑀 ) ) | |
| 25 | f1of | ⊢ ( ◡ 𝐻 : ran 𝐻 –1-1-onto→ ( 1 ... 𝑀 ) → ◡ 𝐻 : ran 𝐻 ⟶ ( 1 ... 𝑀 ) ) | |
| 26 | 23 24 25 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ◡ 𝐻 : ran 𝐻 ⟶ ( 1 ... 𝑀 ) ) |
| 27 | 26 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → ( ◡ 𝐻 ‘ 𝑥 ) ∈ ( 1 ... 𝑀 ) ) |
| 28 | fvco3 | ⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ ( ◡ 𝐻 ‘ 𝑥 ) ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ) ) | |
| 29 | 20 27 28 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) = ( 𝐹 ‘ ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ) ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝑊 = ∅ ) | |
| 31 | 30 | difeq2d | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( 1 ... 𝑀 ) ∖ 𝑊 ) = ( ( 1 ... 𝑀 ) ∖ ∅ ) ) |
| 32 | dif0 | ⊢ ( ( 1 ... 𝑀 ) ∖ ∅ ) = ( 1 ... 𝑀 ) | |
| 33 | 31 32 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( 1 ... 𝑀 ) ∖ 𝑊 ) = ( 1 ... 𝑀 ) ) |
| 34 | 33 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → ( ( 1 ... 𝑀 ) ∖ 𝑊 ) = ( 1 ... 𝑀 ) ) |
| 35 | 27 34 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → ( ◡ 𝐻 ‘ 𝑥 ) ∈ ( ( 1 ... 𝑀 ) ∖ 𝑊 ) ) |
| 36 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) | |
| 37 | 7 19 36 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) |
| 39 | 12 | eqimss2i | ⊢ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ 𝑊 |
| 40 | 39 | a1i | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ 𝑊 ) |
| 41 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 1 ... 𝑀 ) ∈ V ) | |
| 42 | 2 | fvexi | ⊢ 0 ∈ V |
| 43 | 42 | a1i | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 0 ∈ V ) |
| 44 | 38 40 41 43 | suppssr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( ◡ 𝐻 ‘ 𝑥 ) ∈ ( ( 1 ... 𝑀 ) ∖ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 45 | 35 44 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 46 | f1ocnvfv2 | ⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ∧ 𝑥 ∈ ran 𝐻 ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) = 𝑥 ) | |
| 47 | 23 46 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) = 𝑥 ) |
| 48 | 47 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → ( 𝐹 ‘ ( 𝐻 ‘ ( ◡ 𝐻 ‘ 𝑥 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 49 | 29 45 48 | 3eqtr3rd | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 50 | fvex | ⊢ ( 𝐹 ‘ 𝑥 ) ∈ V | |
| 51 | 50 | elsn | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ↔ ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 52 | 49 51 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ran 𝐻 ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 53 | 52 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 ∈ ran 𝐻 ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 54 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ ran 𝐻 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐻 ) ) | |
| 55 | 42 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 56 | 7 11 6 55 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ran 𝐻 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 57 | 56 51 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 ∖ ran 𝐻 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 58 | 54 57 | sylan2br | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐻 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 59 | 58 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ ran 𝐻 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 60 | 59 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ 𝐴 ) ∧ ¬ 𝑥 ∈ ran 𝐻 ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 61 | 53 60 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ { 0 } ) |
| 62 | 61 51 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 63 | 62 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 64 | 17 63 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 0 ) ) |
| 65 | 64 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑥 ∈ 𝐴 ↦ 0 ) ) ) |
| 66 | 1 2 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 67 | 1 3 2 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 0 ∈ 𝐵 ) → ( 0 + 0 ) = 0 ) |
| 68 | 5 66 67 | syl2anc2 | ⊢ ( 𝜑 → ( 0 + 0 ) = 0 ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 0 + 0 ) = 0 ) |
| 70 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 71 | 9 70 | eleqtrdi | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 73 | 33 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝑥 ∈ ( ( 1 ... 𝑀 ) ∖ 𝑊 ) ↔ 𝑥 ∈ ( 1 ... 𝑀 ) ) ) |
| 74 | 73 | biimpar | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 1 ... 𝑀 ) ) → 𝑥 ∈ ( ( 1 ... 𝑀 ) ∖ 𝑊 ) ) |
| 75 | 38 40 41 43 | suppssr | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( ( 1 ... 𝑀 ) ∖ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = 0 ) |
| 76 | 74 75 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑥 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = 0 ) |
| 77 | 69 72 76 | seqid3 | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) = 0 ) |
| 78 | 15 65 77 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) |
| 79 | fzf | ⊢ ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ | |
| 80 | ffn | ⊢ ( ... : ( ℤ × ℤ ) ⟶ 𝒫 ℤ → ... Fn ( ℤ × ℤ ) ) | |
| 81 | ovelrn | ⊢ ( ... Fn ( ℤ × ℤ ) → ( 𝐴 ∈ ran ... ↔ ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑚 ... 𝑛 ) ) ) | |
| 82 | 79 80 81 | mp2b | ⊢ ( 𝐴 ∈ ran ... ↔ ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑚 ... 𝑛 ) ) |
| 83 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → 𝐺 ∈ Mnd ) |
| 84 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → 𝐴 = ( 𝑚 ... 𝑛 ) ) | |
| 85 | frel | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → Rel 𝐹 ) | |
| 86 | reldm0 | ⊢ ( Rel 𝐹 → ( 𝐹 = ∅ ↔ dom 𝐹 = ∅ ) ) | |
| 87 | 7 85 86 | 3syl | ⊢ ( 𝜑 → ( 𝐹 = ∅ ↔ dom 𝐹 = ∅ ) ) |
| 88 | 7 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 89 | 88 | eqeq1d | ⊢ ( 𝜑 → ( dom 𝐹 = ∅ ↔ 𝐴 = ∅ ) ) |
| 90 | 87 89 | bitrd | ⊢ ( 𝜑 → ( 𝐹 = ∅ ↔ 𝐴 = ∅ ) ) |
| 91 | coeq1 | ⊢ ( 𝐹 = ∅ → ( 𝐹 ∘ 𝐻 ) = ( ∅ ∘ 𝐻 ) ) | |
| 92 | co01 | ⊢ ( ∅ ∘ 𝐻 ) = ∅ | |
| 93 | 91 92 | eqtrdi | ⊢ ( 𝐹 = ∅ → ( 𝐹 ∘ 𝐻 ) = ∅ ) |
| 94 | 93 | oveq1d | ⊢ ( 𝐹 = ∅ → ( ( 𝐹 ∘ 𝐻 ) supp 0 ) = ( ∅ supp 0 ) ) |
| 95 | supp0 | ⊢ ( 0 ∈ V → ( ∅ supp 0 ) = ∅ ) | |
| 96 | 42 95 | ax-mp | ⊢ ( ∅ supp 0 ) = ∅ |
| 97 | 94 96 | eqtrdi | ⊢ ( 𝐹 = ∅ → ( ( 𝐹 ∘ 𝐻 ) supp 0 ) = ∅ ) |
| 98 | 12 97 | eqtrid | ⊢ ( 𝐹 = ∅ → 𝑊 = ∅ ) |
| 99 | 90 98 | biimtrrdi | ⊢ ( 𝜑 → ( 𝐴 = ∅ → 𝑊 = ∅ ) ) |
| 100 | 99 | necon3d | ⊢ ( 𝜑 → ( 𝑊 ≠ ∅ → 𝐴 ≠ ∅ ) ) |
| 101 | 100 | imp | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 102 | 101 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → 𝐴 ≠ ∅ ) |
| 103 | 84 102 | eqnetrrd | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ( 𝑚 ... 𝑛 ) ≠ ∅ ) |
| 104 | fzn0 | ⊢ ( ( 𝑚 ... 𝑛 ) ≠ ∅ ↔ 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) | |
| 105 | 103 104 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑚 ) ) |
| 106 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 107 | 84 | feq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : ( 𝑚 ... 𝑛 ) ⟶ 𝐵 ) ) |
| 108 | 106 107 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → 𝐹 : ( 𝑚 ... 𝑛 ) ⟶ 𝐵 ) |
| 109 | 1 3 83 105 108 | gsumval2 | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 110 | frn | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 → ran 𝐻 ⊆ 𝐴 ) | |
| 111 | 10 18 110 | 3syl | ⊢ ( 𝜑 → ran 𝐻 ⊆ 𝐴 ) |
| 112 | 111 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ran 𝐻 ⊆ 𝐴 ) |
| 113 | 112 84 | sseqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ran 𝐻 ⊆ ( 𝑚 ... 𝑛 ) ) |
| 114 | fzssuz | ⊢ ( 𝑚 ... 𝑛 ) ⊆ ( ℤ≥ ‘ 𝑚 ) | |
| 115 | uzssz | ⊢ ( ℤ≥ ‘ 𝑚 ) ⊆ ℤ | |
| 116 | zssre | ⊢ ℤ ⊆ ℝ | |
| 117 | 115 116 | sstri | ⊢ ( ℤ≥ ‘ 𝑚 ) ⊆ ℝ |
| 118 | 114 117 | sstri | ⊢ ( 𝑚 ... 𝑛 ) ⊆ ℝ |
| 119 | 113 118 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ran 𝐻 ⊆ ℝ ) |
| 120 | ltso | ⊢ < Or ℝ | |
| 121 | soss | ⊢ ( ran 𝐻 ⊆ ℝ → ( < Or ℝ → < Or ran 𝐻 ) ) | |
| 122 | 119 120 121 | mpisyl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → < Or ran 𝐻 ) |
| 123 | fzfi | ⊢ ( 1 ... 𝑀 ) ∈ Fin | |
| 124 | 123 | a1i | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
| 125 | 19 124 | fexd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 126 | f1oen3g | ⊢ ( ( 𝐻 ∈ V ∧ 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) → ( 1 ... 𝑀 ) ≈ ran 𝐻 ) | |
| 127 | 125 22 126 | syl2anc | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ≈ ran 𝐻 ) |
| 128 | enfi | ⊢ ( ( 1 ... 𝑀 ) ≈ ran 𝐻 → ( ( 1 ... 𝑀 ) ∈ Fin ↔ ran 𝐻 ∈ Fin ) ) | |
| 129 | 127 128 | syl | ⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∈ Fin ↔ ran 𝐻 ∈ Fin ) ) |
| 130 | 123 129 | mpbii | ⊢ ( 𝜑 → ran 𝐻 ∈ Fin ) |
| 131 | 130 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ran 𝐻 ∈ Fin ) |
| 132 | fz1iso | ⊢ ( ( < Or ran 𝐻 ∧ ran 𝐻 ∈ Fin ) → ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) | |
| 133 | 122 131 132 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) |
| 134 | 9 | nnnn0d | ⊢ ( 𝜑 → 𝑀 ∈ ℕ0 ) |
| 135 | hashfz1 | ⊢ ( 𝑀 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) | |
| 136 | 134 135 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = 𝑀 ) |
| 137 | 124 22 | hasheqf1od | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑀 ) ) = ( ♯ ‘ ran 𝐻 ) ) |
| 138 | 136 137 | eqtr3d | ⊢ ( 𝜑 → 𝑀 = ( ♯ ‘ ran 𝐻 ) ) |
| 139 | 138 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝑀 = ( ♯ ‘ ran 𝐻 ) ) |
| 140 | 139 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ran 𝐻 ) ) ) |
| 141 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝐺 ∈ Mnd ) |
| 142 | 1 3 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 143 | 142 | 3expb | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 144 | 141 143 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 145 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 146 | 145 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ ran 𝐹 ) → 𝑥 ∈ ( 𝑍 ‘ ran 𝐹 ) ) |
| 147 | 3 4 | cntzi | ⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ ran 𝐹 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 148 | 146 147 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ ran 𝐹 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 149 | 148 | anasss | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 150 | 1 3 | mndass | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 151 | 141 150 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 152 | 71 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝑀 ∈ ( ℤ≥ ‘ 1 ) ) |
| 153 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 154 | 153 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 155 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) | |
| 156 | isof1o | ⊢ ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) → 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐻 ) ) –1-1-onto→ ran 𝐻 ) | |
| 157 | 155 156 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐻 ) ) –1-1-onto→ ran 𝐻 ) |
| 158 | 139 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( 1 ... 𝑀 ) = ( 1 ... ( ♯ ‘ ran 𝐻 ) ) ) |
| 159 | 158 | f1oeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ↔ 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐻 ) ) –1-1-onto→ ran 𝐻 ) ) |
| 160 | 157 159 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) |
| 161 | f1ocnv | ⊢ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 → ◡ 𝑓 : ran 𝐻 –1-1-onto→ ( 1 ... 𝑀 ) ) | |
| 162 | 160 161 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ◡ 𝑓 : ran 𝐻 –1-1-onto→ ( 1 ... 𝑀 ) ) |
| 163 | 22 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) |
| 164 | f1oco | ⊢ ( ( ◡ 𝑓 : ran 𝐻 –1-1-onto→ ( 1 ... 𝑀 ) ∧ 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) → ( ◡ 𝑓 ∘ 𝐻 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) | |
| 165 | 162 163 164 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( ◡ 𝑓 ∘ 𝐻 ) : ( 1 ... 𝑀 ) –1-1-onto→ ( 1 ... 𝑀 ) ) |
| 166 | ffn | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 167 | dffn4 | ⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 : 𝐴 –onto→ ran 𝐹 ) | |
| 168 | 166 167 | sylib | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 : 𝐴 –onto→ ran 𝐹 ) |
| 169 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ ran 𝐹 → 𝐹 : 𝐴 ⟶ ran 𝐹 ) | |
| 170 | 153 168 169 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝐹 : 𝐴 ⟶ ran 𝐹 ) |
| 171 | f1of | ⊢ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 → 𝑓 : ( 1 ... 𝑀 ) ⟶ ran 𝐻 ) | |
| 172 | 160 171 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝑓 : ( 1 ... 𝑀 ) ⟶ ran 𝐻 ) |
| 173 | 111 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ran 𝐻 ⊆ 𝐴 ) |
| 174 | 172 173 | fssd | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝑓 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 175 | fco | ⊢ ( ( 𝐹 : 𝐴 ⟶ ran 𝐹 ∧ 𝑓 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐹 ) | |
| 176 | 170 174 175 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( 𝐹 ∘ 𝑓 ) : ( 1 ... 𝑀 ) ⟶ ran 𝐹 ) |
| 177 | 176 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 178 | f1ococnv2 | ⊢ ( 𝑓 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 → ( 𝑓 ∘ ◡ 𝑓 ) = ( I ↾ ran 𝐻 ) ) | |
| 179 | 160 178 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( 𝑓 ∘ ◡ 𝑓 ) = ( I ↾ ran 𝐻 ) ) |
| 180 | 179 | coeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( ( 𝑓 ∘ ◡ 𝑓 ) ∘ 𝐻 ) = ( ( I ↾ ran 𝐻 ) ∘ 𝐻 ) ) |
| 181 | f1of | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 → 𝐻 : ( 1 ... 𝑀 ) ⟶ ran 𝐻 ) | |
| 182 | fcoi2 | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) ⟶ ran 𝐻 → ( ( I ↾ ran 𝐻 ) ∘ 𝐻 ) = 𝐻 ) | |
| 183 | 163 181 182 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( ( I ↾ ran 𝐻 ) ∘ 𝐻 ) = 𝐻 ) |
| 184 | 180 183 | eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝐻 = ( ( 𝑓 ∘ ◡ 𝑓 ) ∘ 𝐻 ) ) |
| 185 | coass | ⊢ ( ( 𝑓 ∘ ◡ 𝑓 ) ∘ 𝐻 ) = ( 𝑓 ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) | |
| 186 | 184 185 | eqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝐻 = ( 𝑓 ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) ) |
| 187 | 186 | coeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( 𝐹 ∘ 𝐻 ) = ( 𝐹 ∘ ( 𝑓 ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) ) ) |
| 188 | coass | ⊢ ( ( 𝐹 ∘ 𝑓 ) ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) = ( 𝐹 ∘ ( 𝑓 ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) ) | |
| 189 | 187 188 | eqtr4di | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( 𝐹 ∘ 𝐻 ) = ( ( 𝐹 ∘ 𝑓 ) ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) ) |
| 190 | 189 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑘 ) = ( ( ( 𝐹 ∘ 𝑓 ) ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) ‘ 𝑘 ) ) |
| 191 | 190 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑘 ) = ( ( ( 𝐹 ∘ 𝑓 ) ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) ‘ 𝑘 ) ) |
| 192 | f1of | ⊢ ( ◡ 𝑓 : ran 𝐻 –1-1-onto→ ( 1 ... 𝑀 ) → ◡ 𝑓 : ran 𝐻 ⟶ ( 1 ... 𝑀 ) ) | |
| 193 | 160 161 192 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ◡ 𝑓 : ran 𝐻 ⟶ ( 1 ... 𝑀 ) ) |
| 194 | 163 181 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝐻 : ( 1 ... 𝑀 ) ⟶ ran 𝐻 ) |
| 195 | fco | ⊢ ( ( ◡ 𝑓 : ran 𝐻 ⟶ ( 1 ... 𝑀 ) ∧ 𝐻 : ( 1 ... 𝑀 ) ⟶ ran 𝐻 ) → ( ◡ 𝑓 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) | |
| 196 | 193 194 195 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( ◡ 𝑓 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ) |
| 197 | fvco3 | ⊢ ( ( ( ◡ 𝑓 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ ( 1 ... 𝑀 ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐹 ∘ 𝑓 ) ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) ‘ 𝑘 ) = ( ( 𝐹 ∘ 𝑓 ) ‘ ( ( ◡ 𝑓 ∘ 𝐻 ) ‘ 𝑘 ) ) ) | |
| 198 | 196 197 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( ( 𝐹 ∘ 𝑓 ) ∘ ( ◡ 𝑓 ∘ 𝐻 ) ) ‘ 𝑘 ) = ( ( 𝐹 ∘ 𝑓 ) ‘ ( ( ◡ 𝑓 ∘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 199 | 191 198 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑘 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑘 ) = ( ( 𝐹 ∘ 𝑓 ) ‘ ( ( ◡ 𝑓 ∘ 𝐻 ) ‘ 𝑘 ) ) ) |
| 200 | 144 149 151 152 154 165 177 199 | seqf1o | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ 𝑀 ) ) |
| 201 | 1 3 2 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 202 | 141 201 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 203 | 1 3 2 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 204 | 141 203 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 205 | 141 66 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 0 ∈ 𝐵 ) |
| 206 | fdm | ⊢ ( 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 → dom 𝐻 = ( 1 ... 𝑀 ) ) | |
| 207 | 10 18 206 | 3syl | ⊢ ( 𝜑 → dom 𝐻 = ( 1 ... 𝑀 ) ) |
| 208 | eluzfz1 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑀 ) ) | |
| 209 | ne0i | ⊢ ( 1 ∈ ( 1 ... 𝑀 ) → ( 1 ... 𝑀 ) ≠ ∅ ) | |
| 210 | 71 208 209 | 3syl | ⊢ ( 𝜑 → ( 1 ... 𝑀 ) ≠ ∅ ) |
| 211 | 207 210 | eqnetrd | ⊢ ( 𝜑 → dom 𝐻 ≠ ∅ ) |
| 212 | dm0rn0 | ⊢ ( dom 𝐻 = ∅ ↔ ran 𝐻 = ∅ ) | |
| 213 | 212 | necon3bii | ⊢ ( dom 𝐻 ≠ ∅ ↔ ran 𝐻 ≠ ∅ ) |
| 214 | 211 213 | sylib | ⊢ ( 𝜑 → ran 𝐻 ≠ ∅ ) |
| 215 | 214 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ran 𝐻 ≠ ∅ ) |
| 216 | 113 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ran 𝐻 ⊆ ( 𝑚 ... 𝑛 ) ) |
| 217 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝐴 = ( 𝑚 ... 𝑛 ) ) | |
| 218 | 217 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝑚 ... 𝑛 ) ) ) |
| 219 | 218 | biimpar | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ ( 𝑚 ... 𝑛 ) ) → 𝑥 ∈ 𝐴 ) |
| 220 | 153 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 221 | 219 220 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ ( 𝑚 ... 𝑛 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 222 | 217 | difeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( 𝐴 ∖ ran 𝐻 ) = ( ( 𝑚 ... 𝑛 ) ∖ ran 𝐻 ) ) |
| 223 | 222 | eleq2d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( 𝑥 ∈ ( 𝐴 ∖ ran 𝐻 ) ↔ 𝑥 ∈ ( ( 𝑚 ... 𝑛 ) ∖ ran 𝐻 ) ) ) |
| 224 | 223 | biimpar | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ ( ( 𝑚 ... 𝑛 ) ∖ ran 𝐻 ) ) → 𝑥 ∈ ( 𝐴 ∖ ran 𝐻 ) ) |
| 225 | 56 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ ( 𝐴 ∖ ran 𝐻 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 226 | 224 225 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑥 ∈ ( ( 𝑚 ... 𝑛 ) ∖ ran 𝐻 ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 227 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐻 ) ) –1-1-onto→ ran 𝐻 → 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐻 ) ) ⟶ ran 𝐻 ) | |
| 228 | 155 156 227 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐻 ) ) ⟶ ran 𝐻 ) |
| 229 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ ran 𝐻 ) ) ⟶ ran 𝐻 ∧ 𝑦 ∈ ( 1 ... ( ♯ ‘ ran 𝐻 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 230 | 228 229 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) ∧ 𝑦 ∈ ( 1 ... ( ♯ ‘ ran 𝐻 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
| 231 | 202 204 144 205 155 215 216 221 226 230 | seqcoll2 | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ ran 𝐻 ) ) ) |
| 232 | 140 200 231 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( 𝐴 = ( 𝑚 ... 𝑛 ) ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) ) ) → ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 233 | 232 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) → ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 234 | 233 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ( ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ ran 𝐻 ) ) , ran 𝐻 ) → ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) ) |
| 235 | 133 234 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) = ( seq 𝑚 ( + , 𝐹 ) ‘ 𝑛 ) ) |
| 236 | 109 235 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ 𝐴 = ( 𝑚 ... 𝑛 ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) |
| 237 | 236 | ex | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( 𝐴 = ( 𝑚 ... 𝑛 ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) ) |
| 238 | 237 | rexlimdvw | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑚 ... 𝑛 ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) ) |
| 239 | 238 | rexlimdvw | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( ∃ 𝑚 ∈ ℤ ∃ 𝑛 ∈ ℤ 𝐴 = ( 𝑚 ... 𝑛 ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) ) |
| 240 | 82 239 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( 𝐴 ∈ ran ... → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) ) |
| 241 | suppssdm | ⊢ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ dom ( 𝐹 ∘ 𝐻 ) | |
| 242 | 12 241 | eqsstri | ⊢ 𝑊 ⊆ dom ( 𝐹 ∘ 𝐻 ) |
| 243 | 242 37 | fssdm | ⊢ ( 𝜑 → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 244 | fz1ssnn | ⊢ ( 1 ... 𝑀 ) ⊆ ℕ | |
| 245 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 246 | 244 245 | sstri | ⊢ ( 1 ... 𝑀 ) ⊆ ℝ |
| 247 | 243 246 | sstrdi | ⊢ ( 𝜑 → 𝑊 ⊆ ℝ ) |
| 248 | soss | ⊢ ( 𝑊 ⊆ ℝ → ( < Or ℝ → < Or 𝑊 ) ) | |
| 249 | 247 120 248 | mpisyl | ⊢ ( 𝜑 → < Or 𝑊 ) |
| 250 | ssfi | ⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → 𝑊 ∈ Fin ) | |
| 251 | 123 243 250 | sylancr | ⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 252 | fz1iso | ⊢ ( ( < Or 𝑊 ∧ 𝑊 ∈ Fin ) → ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) | |
| 253 | 249 251 252 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) |
| 254 | 253 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ¬ 𝐴 ∈ ran ... ) → ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) |
| 255 | 1 2 3 4 5 6 7 8 9 10 11 12 | gsumval3lem2 | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 256 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐺 ∈ Mnd ) |
| 257 | 256 201 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 258 | 256 203 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 259 | 256 143 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 260 | 256 66 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 0 ∈ 𝐵 ) |
| 261 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) | |
| 262 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ≠ ∅ ) | |
| 263 | 243 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 264 | 37 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) |
| 265 | 264 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) ∧ 𝑥 ∈ ( 1 ... 𝑀 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) ∈ 𝐵 ) |
| 266 | 39 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ 𝑊 ) |
| 267 | ovexd | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 1 ... 𝑀 ) ∈ V ) | |
| 268 | 42 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 0 ∈ V ) |
| 269 | 264 266 267 268 | suppssr | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) ∧ 𝑥 ∈ ( ( 1 ... 𝑀 ) ∖ 𝑊 ) ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = 0 ) |
| 270 | coass | ⊢ ( ( 𝐹 ∘ 𝐻 ) ∘ 𝑓 ) = ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) | |
| 271 | 270 | fveq1i | ⊢ ( ( ( 𝐹 ∘ 𝐻 ) ∘ 𝑓 ) ‘ 𝑦 ) = ( ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑦 ) |
| 272 | isof1o | ⊢ ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) | |
| 273 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) | |
| 274 | 261 272 273 | 3syl | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) |
| 275 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ∧ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝐹 ∘ 𝐻 ) ∘ 𝑓 ) ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝐻 ) ‘ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 276 | 274 275 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) ∧ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝐹 ∘ 𝐻 ) ∘ 𝑓 ) ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝐻 ) ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
| 277 | 271 276 | eqtr3id | ⊢ ( ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) ∧ 𝑦 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ‘ 𝑦 ) = ( ( 𝐹 ∘ 𝐻 ) ‘ ( 𝑓 ‘ 𝑦 ) ) ) |
| 278 | 257 258 259 260 261 262 263 265 269 277 | seqcoll2 | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 279 | 255 278 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) |
| 280 | 279 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ¬ 𝐴 ∈ ran ... ) → ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) ) |
| 281 | 280 | exlimdv | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ¬ 𝐴 ∈ ran ... ) → ( ∃ 𝑓 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) ) |
| 282 | 254 281 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ¬ 𝐴 ∈ ran ... ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) |
| 283 | 282 | ex | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( ¬ 𝐴 ∈ ran ... → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) ) |
| 284 | 240 283 | pm2.61d | ⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) |
| 285 | 78 284 | pm2.61dane | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ 𝐻 ) ) ‘ 𝑀 ) ) |