This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfveq.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| seqfveq.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | ||
| Assertion | seqfveq | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfveq.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | seqfveq.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 3 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 5 | uzid | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 8 | 4 7 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) |
| 9 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 10 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) ) |
| 12 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 13 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 15 | 11 12 14 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
| 16 | 8 15 | eqtrd | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) |
| 17 | fzp1ss | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 18 | 4 17 | syl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 19 | 18 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) |
| 20 | 19 2 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 21 | 6 16 1 20 | seqfveq2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) |