This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One plus the upper bound of a finite set of integers is not a member of that set. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzp1nel | ⊢ ¬ ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 2 | ltp1 | ⊢ ( 𝑁 ∈ ℝ → 𝑁 < ( 𝑁 + 1 ) ) | |
| 3 | id | ⊢ ( 𝑁 ∈ ℝ → 𝑁 ∈ ℝ ) | |
| 4 | peano2re | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 + 1 ) ∈ ℝ ) | |
| 5 | 3 4 | ltnled | ⊢ ( 𝑁 ∈ ℝ → ( 𝑁 < ( 𝑁 + 1 ) ↔ ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) ) |
| 6 | 2 5 | mpbid | ⊢ ( 𝑁 ∈ ℝ → ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) |
| 7 | 1 6 | syl | ⊢ ( 𝑁 ∈ ℤ → ¬ ( 𝑁 + 1 ) ≤ 𝑁 ) |
| 8 | 7 | intnand | ⊢ ( 𝑁 ∈ ℤ → ¬ ( 𝑀 ≤ ( 𝑁 + 1 ) ∧ ( 𝑁 + 1 ) ≤ 𝑁 ) ) |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ¬ ( 𝑀 ≤ ( 𝑁 + 1 ) ∧ ( 𝑁 + 1 ) ≤ 𝑁 ) ) |
| 10 | elfz2 | ⊢ ( ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ) ∧ ( 𝑀 ≤ ( 𝑁 + 1 ) ∧ ( 𝑁 + 1 ) ≤ 𝑁 ) ) ) | |
| 11 | 10 | notbii | ⊢ ( ¬ ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ¬ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ) ∧ ( 𝑀 ≤ ( 𝑁 + 1 ) ∧ ( 𝑁 + 1 ) ≤ 𝑁 ) ) ) |
| 12 | imnan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ¬ ( 𝑀 ≤ ( 𝑁 + 1 ) ∧ ( 𝑁 + 1 ) ≤ 𝑁 ) ) ↔ ¬ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ) ∧ ( 𝑀 ≤ ( 𝑁 + 1 ) ∧ ( 𝑁 + 1 ) ≤ 𝑁 ) ) ) | |
| 13 | 11 12 | bitr4i | ⊢ ( ¬ ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑁 + 1 ) ∈ ℤ ) → ¬ ( 𝑀 ≤ ( 𝑁 + 1 ) ∧ ( 𝑁 + 1 ) ≤ 𝑁 ) ) ) |
| 14 | 9 13 | mpbir | ⊢ ¬ ( 𝑁 + 1 ) ∈ ( 𝑀 ... 𝑁 ) |