This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for gsumcl and related theorems. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumcllem.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| gsumcllem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumcllem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| gsumcllem.s | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) | ||
| Assertion | gsumcllem | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumcllem.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 2 | gsumcllem.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | gsumcllem.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 4 | gsumcllem.s | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ 𝑊 ) | |
| 5 | 1 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 7 | difeq2 | ⊢ ( 𝑊 = ∅ → ( 𝐴 ∖ 𝑊 ) = ( 𝐴 ∖ ∅ ) ) | |
| 8 | dif0 | ⊢ ( 𝐴 ∖ ∅ ) = 𝐴 | |
| 9 | 7 8 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝐴 ∖ 𝑊 ) = 𝐴 ) |
| 10 | 9 | eleq2d | ⊢ ( 𝑊 = ∅ → ( 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ↔ 𝑘 ∈ 𝐴 ) ) |
| 11 | 10 | biimpar | ⊢ ( ( 𝑊 = ∅ ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) |
| 12 | 1 4 2 3 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑊 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 13 | 11 12 | sylan2 | ⊢ ( ( 𝜑 ∧ ( 𝑊 = ∅ ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 14 | 13 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑊 = ∅ ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 𝑍 ) |
| 15 | 14 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑘 ) ) = ( 𝑘 ∈ 𝐴 ↦ 𝑍 ) ) |
| 16 | 6 15 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑊 = ∅ ) → 𝐹 = ( 𝑘 ∈ 𝐴 ↦ 𝑍 ) ) |