This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqcaopr2 . (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcaopr3.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| seqcaopr3.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑄 𝑦 ) ∈ 𝑆 ) | ||
| seqcaopr3.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | ||
| seqcaopr3.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| seqcaopr3.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) | ||
| seqcaopr3.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) | ||
| seqcaopr3.7 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) | ||
| Assertion | seqcaopr3 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcaopr3.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 2 | seqcaopr3.2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 𝑄 𝑦 ) ∈ 𝑆 ) | |
| 3 | seqcaopr3.3 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 4 | seqcaopr3.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 5 | seqcaopr3.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 6 | seqcaopr3.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) | |
| 7 | seqcaopr3.7 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) | |
| 8 | eluzfz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 9 | 3 8 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
| 10 | fveq2 | ⊢ ( 𝑧 = 𝑀 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) ) | |
| 11 | fveq2 | ⊢ ( 𝑧 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑧 = 𝑀 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) | |
| 13 | 11 12 | oveq12d | ⊢ ( 𝑧 = 𝑀 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
| 14 | 10 13 | eqeq12d | ⊢ ( 𝑧 = 𝑀 → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ↔ ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) |
| 15 | 14 | imbi2d | ⊢ ( 𝑧 = 𝑀 → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑧 = 𝑛 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) ) | |
| 17 | fveq2 | ⊢ ( 𝑧 = 𝑛 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) ) | |
| 18 | fveq2 | ⊢ ( 𝑧 = 𝑛 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) | |
| 19 | 17 18 | oveq12d | ⊢ ( 𝑧 = 𝑛 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) |
| 20 | 16 19 | eqeq12d | ⊢ ( 𝑧 = 𝑛 → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ↔ ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) |
| 21 | 20 | imbi2d | ⊢ ( 𝑧 = 𝑛 → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 23 | fveq2 | ⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 24 | fveq2 | ⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) | |
| 25 | 23 24 | oveq12d | ⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) |
| 26 | 22 25 | eqeq12d | ⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ↔ ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑧 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 28 | fveq2 | ⊢ ( 𝑧 = 𝑁 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) ) | |
| 29 | fveq2 | ⊢ ( 𝑧 = 𝑁 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ) | |
| 30 | fveq2 | ⊢ ( 𝑧 = 𝑁 → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) = ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) | |
| 31 | 29 30 | oveq12d | ⊢ ( 𝑧 = 𝑁 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |
| 32 | 28 31 | eqeq12d | ⊢ ( 𝑧 = 𝑁 → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ↔ ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 33 | 32 | imbi2d | ⊢ ( 𝑧 = 𝑁 → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑧 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑧 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑧 ) ) ) ↔ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) ) |
| 34 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑀 ) ) | |
| 35 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 36 | fveq2 | ⊢ ( 𝑘 = 𝑀 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 37 | 35 36 | oveq12d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) |
| 38 | 34 37 | eqeq12d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ 𝑀 ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) ) |
| 39 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) |
| 40 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 41 | 3 40 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 42 | 38 39 41 | rspcdva | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝑀 ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) |
| 43 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 44 | 3 43 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 45 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( 𝐻 ‘ 𝑀 ) ) | |
| 46 | 44 45 | syl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( 𝐻 ‘ 𝑀 ) ) |
| 47 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 48 | seq1 | ⊢ ( 𝑀 ∈ ℤ → ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) = ( 𝐺 ‘ 𝑀 ) ) | |
| 49 | 47 48 | oveq12d | ⊢ ( 𝑀 ∈ ℤ → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) |
| 50 | 44 49 | syl | ⊢ ( 𝜑 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) = ( ( 𝐹 ‘ 𝑀 ) 𝑄 ( 𝐺 ‘ 𝑀 ) ) ) |
| 51 | 42 46 50 | 3eqtr4d | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) |
| 52 | 51 | a1i | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑀 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑀 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑀 ) ) ) ) |
| 53 | oveq1 | ⊢ ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 54 | elfzouz | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 55 | 54 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 56 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) |
| 58 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) | |
| 59 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) | |
| 60 | fveq2 | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) | |
| 61 | 59 60 | oveq12d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 62 | 58 61 | eqeq12d | ⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ↔ ( 𝐻 ‘ ( 𝑛 + 1 ) ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 63 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( 𝐻 ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝑘 ) 𝑄 ( 𝐺 ‘ 𝑘 ) ) ) |
| 64 | fzofzp1 | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) | |
| 65 | 64 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑛 + 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 66 | 62 63 65 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐻 ‘ ( 𝑛 + 1 ) ) = ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) |
| 67 | 66 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( ( 𝐹 ‘ ( 𝑛 + 1 ) ) 𝑄 ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 68 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 69 | seqp1 | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 70 | 68 69 | oveq12d | ⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 71 | 55 70 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) + ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) 𝑄 ( ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) + ( 𝐺 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 72 | 7 67 71 | 3eqtr4rd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) |
| 73 | 57 72 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) = ( ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) + ( 𝐻 ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 74 | 53 73 | imbitrrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
| 75 | 74 | expcom | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝜑 → ( ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 76 | 75 | a2d | ⊢ ( 𝑛 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑛 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑛 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑛 ) ) ) → ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑛 + 1 ) ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ ( 𝑛 + 1 ) ) ) ) ) ) |
| 77 | 15 21 27 33 52 76 | fzind2 | ⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) ) |
| 78 | 9 77 | mpcom | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐻 ) ‘ 𝑁 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) 𝑄 ( seq 𝑀 ( + , 𝐺 ) ‘ 𝑁 ) ) ) |