This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a union is the union of domains. Exercise 56(a) of Enderton p. 65. (Contributed by NM, 12-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmun | ⊢ dom ( 𝐴 ∪ 𝐵 ) = ( dom 𝐴 ∪ dom 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐴 𝑥 ↔ 𝑧 𝐴 𝑥 ) ) | |
| 2 | 1 | exbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 𝑦 𝐴 𝑥 ↔ ∃ 𝑥 𝑧 𝐴 𝑥 ) ) |
| 3 | breq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 𝐵 𝑥 ↔ 𝑧 𝐵 𝑥 ) ) | |
| 4 | 3 | exbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑥 𝑦 𝐵 𝑥 ↔ ∃ 𝑥 𝑧 𝐵 𝑥 ) ) |
| 5 | 2 4 | unabw | ⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 } ∪ { 𝑦 ∣ ∃ 𝑥 𝑦 𝐵 𝑥 } ) = { 𝑧 ∣ ( ∃ 𝑥 𝑧 𝐴 𝑥 ∨ ∃ 𝑥 𝑧 𝐵 𝑥 ) } |
| 6 | brun | ⊢ ( 𝑧 ( 𝐴 ∪ 𝐵 ) 𝑥 ↔ ( 𝑧 𝐴 𝑥 ∨ 𝑧 𝐵 𝑥 ) ) | |
| 7 | 6 | exbii | ⊢ ( ∃ 𝑥 𝑧 ( 𝐴 ∪ 𝐵 ) 𝑥 ↔ ∃ 𝑥 ( 𝑧 𝐴 𝑥 ∨ 𝑧 𝐵 𝑥 ) ) |
| 8 | 19.43 | ⊢ ( ∃ 𝑥 ( 𝑧 𝐴 𝑥 ∨ 𝑧 𝐵 𝑥 ) ↔ ( ∃ 𝑥 𝑧 𝐴 𝑥 ∨ ∃ 𝑥 𝑧 𝐵 𝑥 ) ) | |
| 9 | 7 8 | bitr2i | ⊢ ( ( ∃ 𝑥 𝑧 𝐴 𝑥 ∨ ∃ 𝑥 𝑧 𝐵 𝑥 ) ↔ ∃ 𝑥 𝑧 ( 𝐴 ∪ 𝐵 ) 𝑥 ) |
| 10 | 9 | abbii | ⊢ { 𝑧 ∣ ( ∃ 𝑥 𝑧 𝐴 𝑥 ∨ ∃ 𝑥 𝑧 𝐵 𝑥 ) } = { 𝑧 ∣ ∃ 𝑥 𝑧 ( 𝐴 ∪ 𝐵 ) 𝑥 } |
| 11 | 5 10 | eqtri | ⊢ ( { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 } ∪ { 𝑦 ∣ ∃ 𝑥 𝑦 𝐵 𝑥 } ) = { 𝑧 ∣ ∃ 𝑥 𝑧 ( 𝐴 ∪ 𝐵 ) 𝑥 } |
| 12 | df-dm | ⊢ dom 𝐴 = { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 } | |
| 13 | df-dm | ⊢ dom 𝐵 = { 𝑦 ∣ ∃ 𝑥 𝑦 𝐵 𝑥 } | |
| 14 | 12 13 | uneq12i | ⊢ ( dom 𝐴 ∪ dom 𝐵 ) = ( { 𝑦 ∣ ∃ 𝑥 𝑦 𝐴 𝑥 } ∪ { 𝑦 ∣ ∃ 𝑥 𝑦 𝐵 𝑥 } ) |
| 15 | df-dm | ⊢ dom ( 𝐴 ∪ 𝐵 ) = { 𝑧 ∣ ∃ 𝑥 𝑧 ( 𝐴 ∪ 𝐵 ) 𝑥 } | |
| 16 | 11 14 15 | 3eqtr4ri | ⊢ dom ( 𝐴 ∪ 𝐵 ) = ( dom 𝐴 ∪ dom 𝐵 ) |