This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Proof shortened by AV, 8-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mndcl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mndcl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | mndmgm | ⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm ) | |
| 4 | 1 2 | mgmcl | ⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |
| 5 | 3 4 | syl3an1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 ) |