This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for the restriction of a composition. (Contributed by NM, 12-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resco | ⊢ ( ( 𝐴 ∘ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ∘ ( 𝐵 ↾ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relres | ⊢ Rel ( ( 𝐴 ∘ 𝐵 ) ↾ 𝐶 ) | |
| 2 | relco | ⊢ Rel ( 𝐴 ∘ ( 𝐵 ↾ 𝐶 ) ) | |
| 3 | vex | ⊢ 𝑥 ∈ V | |
| 4 | vex | ⊢ 𝑦 ∈ V | |
| 5 | 3 4 | brco | ⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 6 | 5 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) |
| 7 | 19.42v | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐶 ∧ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) | |
| 8 | vex | ⊢ 𝑧 ∈ V | |
| 9 | 8 | brresi | ⊢ ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐵 𝑧 ) ) |
| 10 | 9 | anbi1i | ⊢ ( ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐵 𝑧 ) ∧ 𝑧 𝐴 𝑦 ) ) |
| 11 | anass | ⊢ ( ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 𝐵 𝑧 ) ∧ 𝑧 𝐴 𝑦 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ) | |
| 12 | 10 11 | bitr2i | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ↔ ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑧 ( 𝑥 ∈ 𝐶 ∧ ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 14 | 6 7 13 | 3bitr2i | ⊢ ( ( 𝑥 ∈ 𝐶 ∧ 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) ↔ ∃ 𝑧 ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 15 | 4 | brresi | ⊢ ( 𝑥 ( ( 𝐴 ∘ 𝐵 ) ↾ 𝐶 ) 𝑦 ↔ ( 𝑥 ∈ 𝐶 ∧ 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) ) |
| 16 | 3 4 | brco | ⊢ ( 𝑥 ( 𝐴 ∘ ( 𝐵 ↾ 𝐶 ) ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 ( 𝐵 ↾ 𝐶 ) 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 17 | 14 15 16 | 3bitr4i | ⊢ ( 𝑥 ( ( 𝐴 ∘ 𝐵 ) ↾ 𝐶 ) 𝑦 ↔ 𝑥 ( 𝐴 ∘ ( 𝐵 ↾ 𝐶 ) ) 𝑦 ) |
| 18 | 1 2 17 | eqbrriv | ⊢ ( ( 𝐴 ∘ 𝐵 ) ↾ 𝐶 ) = ( 𝐴 ∘ ( 𝐵 ↾ 𝐶 ) ) |