This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a point is in a half-open range, the next point is in the closed range. (Contributed by Stefan O'Rear, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzofzp1 | ⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 | ⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐴 ∈ ℤ ) | |
| 2 | uzid | ⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 3 | peano2uz | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 𝐴 ) → ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) ) | |
| 4 | fzoss1 | ⊢ ( ( 𝐴 + 1 ) ∈ ( ℤ≥ ‘ 𝐴 ) → ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ⊆ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) | |
| 5 | 1 2 3 4 | 4syl | ⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ⊆ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) |
| 6 | 1z | ⊢ 1 ∈ ℤ | |
| 7 | fzoaddel | ⊢ ( ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) ∧ 1 ∈ ℤ ) → ( 𝐶 + 1 ) ∈ ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ) | |
| 8 | 6 7 | mpan2 | ⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( ( 𝐴 + 1 ) ..^ ( 𝐵 + 1 ) ) ) |
| 9 | 5 8 | sseldd | ⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) |
| 10 | elfzoel2 | ⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐵 ∈ ℤ ) | |
| 11 | fzval3 | ⊢ ( 𝐵 ∈ ℤ → ( 𝐴 ... 𝐵 ) = ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐴 ... 𝐵 ) = ( 𝐴 ..^ ( 𝐵 + 1 ) ) ) |
| 13 | 9 12 | eleqtrrd | ⊢ ( 𝐶 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝐶 + 1 ) ∈ ( 𝐴 ... 𝐵 ) ) |