This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mndidcl.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mndidcl.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | 1 3 | mndid | ⊢ ( 𝐺 ∈ Mnd → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) ) |
| 5 | 1 2 3 4 | mgmidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |