This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcl.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| seqcl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | ||
| seqcl.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| Assertion | seqcl | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcl.1 | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 2 | seqcl.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 3 | seqcl.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝑀 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑀 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝐹 ‘ 𝑀 ) ∈ 𝑆 ) ) |
| 6 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝑀 ... 𝑁 ) ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 7 | eluzfz1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ( 𝑀 ... 𝑁 ) ) |
| 9 | 5 6 8 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑀 ) ∈ 𝑆 ) |
| 10 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 11 | 1 10 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 12 | fzp1ss | ⊢ ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) ... 𝑁 ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 14 | 13 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → 𝑥 ∈ ( 𝑀 ... 𝑁 ) ) |
| 15 | 14 2 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑀 + 1 ) ... 𝑁 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 16 | 9 3 1 15 | seqcl2 | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑁 ) ∈ 𝑆 ) |