This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a one-to-one function maps one-to-one onto the image. (Contributed by NM, 25-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1ores | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ssres | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 ) | |
| 2 | f1f1orn | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1→ 𝐵 → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ran ( 𝐹 ↾ 𝐶 ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ran ( 𝐹 ↾ 𝐶 ) ) |
| 4 | df-ima | ⊢ ( 𝐹 “ 𝐶 ) = ran ( 𝐹 ↾ 𝐶 ) | |
| 5 | f1oeq3 | ⊢ ( ( 𝐹 “ 𝐶 ) = ran ( 𝐹 ↾ 𝐶 ) → ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ↔ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ran ( 𝐹 ↾ 𝐶 ) ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ↔ ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ran ( 𝐹 ↾ 𝐶 ) ) |
| 7 | 3 6 | sylibr | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 –1-1-onto→ ( 𝐹 “ 𝐶 ) ) |