This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The upper bound of a half-open range is greater than or equal to an element of the range. (Contributed by Mario Carneiro, 29-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzouz2 | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoelz | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ∈ ℤ ) | |
| 2 | elfzoel2 | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 3 | elfzolt2 | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 < 𝑁 ) | |
| 4 | zre | ⊢ ( 𝐾 ∈ ℤ → 𝐾 ∈ ℝ ) | |
| 5 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 6 | ltle | ⊢ ( ( 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝐾 < 𝑁 → 𝐾 ≤ 𝑁 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐾 < 𝑁 → 𝐾 ≤ 𝑁 ) ) |
| 8 | 1 2 7 | syl2anc | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝐾 < 𝑁 → 𝐾 ≤ 𝑁 ) ) |
| 9 | 3 8 | mpd | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝐾 ≤ 𝑁 ) |
| 10 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ↔ ( 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ≤ 𝑁 ) ) | |
| 11 | 1 2 9 10 | syl3anbrc | ⊢ ( 𝐾 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |