This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzi.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| cntzi.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzi | ⊢ ( ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzi.p | ⊢ + = ( +g ‘ 𝑀 ) | |
| 2 | cntzi.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 4 | 3 2 | cntzrcl | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑀 ∈ V ∧ 𝑆 ⊆ ( Base ‘ 𝑀 ) ) ) |
| 5 | 3 1 2 | elcntz | ⊢ ( 𝑆 ⊆ ( Base ‘ 𝑀 ) → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) ) |
| 6 | 4 5 | simpl2im | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( 𝑋 ∈ ( Base ‘ 𝑀 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) ) ) |
| 7 | 6 | simplbda | ⊢ ( ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) |
| 8 | 7 | anidms | ⊢ ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ) |
| 9 | oveq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑋 + 𝑦 ) = ( 𝑋 + 𝑌 ) ) | |
| 10 | oveq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 + 𝑋 ) = ( 𝑌 + 𝑋 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ↔ ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) ) |
| 12 | 11 | rspccva | ⊢ ( ( ∀ 𝑦 ∈ 𝑆 ( 𝑋 + 𝑦 ) = ( 𝑦 + 𝑋 ) ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
| 13 | 8 12 | sylan | ⊢ ( ( 𝑋 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑌 ∈ 𝑆 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |