This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a group sum over the zero element. (Contributed by Mario Carneiro, 7-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | gsumz.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| Assertion | gsumz | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumz.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | eqid | ⊢ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } = { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } | |
| 5 | simpl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → 𝐺 ∈ Mnd ) | |
| 6 | simpr | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 7 | 1 | fvexi | ⊢ 0 ∈ V |
| 8 | 7 | snid | ⊢ 0 ∈ { 0 } |
| 9 | 2 1 3 4 | gsumvallem2 | ⊢ ( 𝐺 ∈ Mnd → { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } = { 0 } ) |
| 10 | 8 9 | eleqtrrid | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } ) |
| 12 | 11 | fmpttd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝑘 ∈ 𝐴 ↦ 0 ) : 𝐴 ⟶ { 𝑥 ∈ ( Base ‘ 𝐺 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) } ) |
| 13 | 2 1 3 4 5 6 12 | gsumval1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 0 ) ) = 0 ) |