This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The support of a class/function is a subset of the support of the union of this class/function with another class/function. (Contributed by AV, 4-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | suppun.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| Assertion | suppun | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppun.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 2 | ssun1 | ⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) | |
| 3 | cnvun | ⊢ ◡ ( 𝐹 ∪ 𝐺 ) = ( ◡ 𝐹 ∪ ◡ 𝐺 ) | |
| 4 | 3 | imaeq1i | ⊢ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 ∪ ◡ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) |
| 5 | imaundir | ⊢ ( ( ◡ 𝐹 ∪ ◡ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) | |
| 6 | 4 5 | eqtri | ⊢ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) |
| 7 | 2 6 | sseqtrri | ⊢ ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) |
| 8 | 7 | a1i | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ⊆ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
| 9 | suppimacnv | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 10 | 9 | adantr | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 11 | unexg | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) | |
| 12 | 11 | adantlr | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝐺 ∈ 𝑉 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
| 13 | 1 12 | sylan2 | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 ∪ 𝐺 ) ∈ V ) |
| 14 | simplr | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → 𝑍 ∈ V ) | |
| 15 | suppimacnv | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) | |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) |
| 17 | 8 10 16 | 3sstr4d | ⊢ ( ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) |
| 18 | 17 | ex | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) ) |
| 19 | supp0prc | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ∅ ) | |
| 20 | 0ss | ⊢ ∅ ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) | |
| 21 | 19 20 | eqsstrdi | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) |
| 22 | 21 | a1d | ⊢ ( ¬ ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) ) |
| 23 | 18 22 | pm2.61i | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ⊆ ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ) |