This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzadd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumzadd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzadd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzadd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzadd.fn | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| gsumzadd.hn | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | ||
| gsumzadd.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | ||
| gsumzadd.c | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) | ||
| gsumzadd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| gsumzadd.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) | ||
| Assertion | gsumzadd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzadd.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumzadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumzadd.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 5 | gsumzadd.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 6 | gsumzadd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 7 | gsumzadd.fn | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 8 | gsumzadd.hn | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | |
| 9 | gsumzadd.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 10 | gsumzadd.c | ⊢ ( 𝜑 → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) | |
| 11 | gsumzadd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 12 | gsumzadd.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) | |
| 13 | eqid | ⊢ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) = ( ( 𝐹 ∪ 𝐻 ) supp 0 ) | |
| 14 | 1 | submss | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 ⊆ 𝐵 ) |
| 15 | 9 14 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) |
| 16 | 11 15 | fssd | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 17 | 12 15 | fssd | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) |
| 18 | 11 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑆 ) |
| 19 | 4 | cntzidss | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ ran 𝐹 ⊆ 𝑆 ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 20 | 10 18 19 | syl2anc | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 21 | 12 | frnd | ⊢ ( 𝜑 → ran 𝐻 ⊆ 𝑆 ) |
| 22 | 4 | cntzidss | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ ran 𝐻 ⊆ 𝑆 ) → ran 𝐻 ⊆ ( 𝑍 ‘ ran 𝐻 ) ) |
| 23 | 10 21 22 | syl2anc | ⊢ ( 𝜑 → ran 𝐻 ⊆ ( 𝑍 ‘ ran 𝐻 ) ) |
| 24 | 3 | submcl | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 25 | 24 | 3expb | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 26 | 9 25 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 27 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
| 28 | 26 11 12 6 6 27 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐻 ) : 𝐴 ⟶ 𝑆 ) |
| 29 | 28 | frnd | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐻 ) ⊆ 𝑆 ) |
| 30 | 4 | cntzidss | ⊢ ( ( 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ∧ ran ( 𝐹 ∘f + 𝐻 ) ⊆ 𝑆 ) → ran ( 𝐹 ∘f + 𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ∘f + 𝐻 ) ) ) |
| 31 | 10 29 30 | syl2anc | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐻 ) ⊆ ( 𝑍 ‘ ran ( 𝐹 ∘f + 𝐻 ) ) ) |
| 32 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → 𝑆 ⊆ ( 𝑍 ‘ 𝑆 ) ) |
| 33 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → 𝑆 ⊆ 𝐵 ) |
| 34 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → 𝐺 ∈ Mnd ) |
| 35 | vex | ⊢ 𝑥 ∈ V | |
| 36 | 35 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → 𝑥 ∈ V ) |
| 37 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 38 | simpl | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) → 𝑥 ⊆ 𝐴 ) | |
| 39 | fssres | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝑆 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ 𝑆 ) | |
| 40 | 12 38 39 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ 𝑆 ) |
| 41 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ran 𝐻 ⊆ ( 𝑍 ‘ ran 𝐻 ) ) |
| 42 | resss | ⊢ ( 𝐻 ↾ 𝑥 ) ⊆ 𝐻 | |
| 43 | 42 | rnssi | ⊢ ran ( 𝐻 ↾ 𝑥 ) ⊆ ran 𝐻 |
| 44 | 4 | cntzidss | ⊢ ( ( ran 𝐻 ⊆ ( 𝑍 ‘ ran 𝐻 ) ∧ ran ( 𝐻 ↾ 𝑥 ) ⊆ ran 𝐻 ) → ran ( 𝐻 ↾ 𝑥 ) ⊆ ( 𝑍 ‘ ran ( 𝐻 ↾ 𝑥 ) ) ) |
| 45 | 41 43 44 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ran ( 𝐻 ↾ 𝑥 ) ⊆ ( 𝑍 ‘ ran ( 𝐻 ↾ 𝑥 ) ) ) |
| 46 | 12 | ffund | ⊢ ( 𝜑 → Fun 𝐻 ) |
| 47 | 46 | funresd | ⊢ ( 𝜑 → Fun ( 𝐻 ↾ 𝑥 ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → Fun ( 𝐻 ↾ 𝑥 ) ) |
| 49 | 8 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐻 supp 0 ) ∈ Fin ) |
| 50 | 49 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( 𝐻 supp 0 ) ∈ Fin ) |
| 51 | 12 6 | fexd | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 52 | 2 | fvexi | ⊢ 0 ∈ V |
| 53 | ressuppss | ⊢ ( ( 𝐻 ∈ V ∧ 0 ∈ V ) → ( ( 𝐻 ↾ 𝑥 ) supp 0 ) ⊆ ( 𝐻 supp 0 ) ) | |
| 54 | 51 52 53 | sylancl | ⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑥 ) supp 0 ) ⊆ ( 𝐻 supp 0 ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( ( 𝐻 ↾ 𝑥 ) supp 0 ) ⊆ ( 𝐻 supp 0 ) ) |
| 56 | 50 55 | ssfid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( ( 𝐻 ↾ 𝑥 ) supp 0 ) ∈ Fin ) |
| 57 | resfunexg | ⊢ ( ( Fun 𝐻 ∧ 𝑥 ∈ V ) → ( 𝐻 ↾ 𝑥 ) ∈ V ) | |
| 58 | 46 35 57 | sylancl | ⊢ ( 𝜑 → ( 𝐻 ↾ 𝑥 ) ∈ V ) |
| 59 | isfsupp | ⊢ ( ( ( 𝐻 ↾ 𝑥 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐻 ↾ 𝑥 ) finSupp 0 ↔ ( Fun ( 𝐻 ↾ 𝑥 ) ∧ ( ( 𝐻 ↾ 𝑥 ) supp 0 ) ∈ Fin ) ) ) | |
| 60 | 58 52 59 | sylancl | ⊢ ( 𝜑 → ( ( 𝐻 ↾ 𝑥 ) finSupp 0 ↔ ( Fun ( 𝐻 ↾ 𝑥 ) ∧ ( ( 𝐻 ↾ 𝑥 ) supp 0 ) ∈ Fin ) ) ) |
| 61 | 60 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( ( 𝐻 ↾ 𝑥 ) finSupp 0 ↔ ( Fun ( 𝐻 ↾ 𝑥 ) ∧ ( ( 𝐻 ↾ 𝑥 ) supp 0 ) ∈ Fin ) ) ) |
| 62 | 48 56 61 | mpbir2and | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) finSupp 0 ) |
| 63 | 2 4 34 36 37 40 45 62 | gsumzsubmcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) ∈ 𝑆 ) |
| 64 | 63 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ 𝑆 ) |
| 65 | 1 4 | cntz2ss | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
| 66 | 33 64 65 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
| 67 | 32 66 | sstrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → 𝑆 ⊆ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
| 68 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) → 𝑘 ∈ 𝐴 ) | |
| 69 | 68 | adantl | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) → 𝑘 ∈ 𝐴 ) |
| 70 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝑆 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) | |
| 71 | 11 69 70 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑆 ) |
| 72 | 67 71 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑘 ∈ ( 𝐴 ∖ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑍 ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
| 73 | 1 2 3 4 5 6 7 8 13 16 17 20 23 31 72 | gsumzaddlem | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |