This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzadd.b | |- B = ( Base ` G ) |
|
| gsumzadd.0 | |- .0. = ( 0g ` G ) |
||
| gsumzadd.p | |- .+ = ( +g ` G ) |
||
| gsumzadd.z | |- Z = ( Cntz ` G ) |
||
| gsumzadd.g | |- ( ph -> G e. Mnd ) |
||
| gsumzadd.a | |- ( ph -> A e. V ) |
||
| gsumzadd.fn | |- ( ph -> F finSupp .0. ) |
||
| gsumzadd.hn | |- ( ph -> H finSupp .0. ) |
||
| gsumzaddlem.w | |- W = ( ( F u. H ) supp .0. ) |
||
| gsumzaddlem.f | |- ( ph -> F : A --> B ) |
||
| gsumzaddlem.h | |- ( ph -> H : A --> B ) |
||
| gsumzaddlem.1 | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumzaddlem.2 | |- ( ph -> ran H C_ ( Z ` ran H ) ) |
||
| gsumzaddlem.3 | |- ( ph -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) ) |
||
| gsumzaddlem.4 | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
||
| Assertion | gsumzaddlem | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzadd.b | |- B = ( Base ` G ) |
|
| 2 | gsumzadd.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumzadd.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumzadd.z | |- Z = ( Cntz ` G ) |
|
| 5 | gsumzadd.g | |- ( ph -> G e. Mnd ) |
|
| 6 | gsumzadd.a | |- ( ph -> A e. V ) |
|
| 7 | gsumzadd.fn | |- ( ph -> F finSupp .0. ) |
|
| 8 | gsumzadd.hn | |- ( ph -> H finSupp .0. ) |
|
| 9 | gsumzaddlem.w | |- W = ( ( F u. H ) supp .0. ) |
|
| 10 | gsumzaddlem.f | |- ( ph -> F : A --> B ) |
|
| 11 | gsumzaddlem.h | |- ( ph -> H : A --> B ) |
|
| 12 | gsumzaddlem.1 | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 13 | gsumzaddlem.2 | |- ( ph -> ran H C_ ( Z ` ran H ) ) |
|
| 14 | gsumzaddlem.3 | |- ( ph -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) ) |
|
| 15 | gsumzaddlem.4 | |- ( ( ph /\ ( x C_ A /\ k e. ( A \ x ) ) ) -> ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
|
| 16 | 1 2 | mndidcl | |- ( G e. Mnd -> .0. e. B ) |
| 17 | 5 16 | syl | |- ( ph -> .0. e. B ) |
| 18 | 1 3 2 | mndlid | |- ( ( G e. Mnd /\ .0. e. B ) -> ( .0. .+ .0. ) = .0. ) |
| 19 | 5 17 18 | syl2anc | |- ( ph -> ( .0. .+ .0. ) = .0. ) |
| 20 | 19 | adantr | |- ( ( ph /\ W = (/) ) -> ( .0. .+ .0. ) = .0. ) |
| 21 | 2 | fvexi | |- .0. e. _V |
| 22 | 21 | a1i | |- ( ph -> .0. e. _V ) |
| 23 | 11 6 | fexd | |- ( ph -> H e. _V ) |
| 24 | 23 | suppun | |- ( ph -> ( F supp .0. ) C_ ( ( F u. H ) supp .0. ) ) |
| 25 | 24 9 | sseqtrrdi | |- ( ph -> ( F supp .0. ) C_ W ) |
| 26 | 10 6 22 25 | gsumcllem | |- ( ( ph /\ W = (/) ) -> F = ( x e. A |-> .0. ) ) |
| 27 | 26 | oveq2d | |- ( ( ph /\ W = (/) ) -> ( G gsum F ) = ( G gsum ( x e. A |-> .0. ) ) ) |
| 28 | 2 | gsumz | |- ( ( G e. Mnd /\ A e. V ) -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 29 | 5 6 28 | syl2anc | |- ( ph -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 30 | 29 | adantr | |- ( ( ph /\ W = (/) ) -> ( G gsum ( x e. A |-> .0. ) ) = .0. ) |
| 31 | 27 30 | eqtrd | |- ( ( ph /\ W = (/) ) -> ( G gsum F ) = .0. ) |
| 32 | 10 6 | fexd | |- ( ph -> F e. _V ) |
| 33 | 32 | suppun | |- ( ph -> ( H supp .0. ) C_ ( ( H u. F ) supp .0. ) ) |
| 34 | uncom | |- ( F u. H ) = ( H u. F ) |
|
| 35 | 34 | oveq1i | |- ( ( F u. H ) supp .0. ) = ( ( H u. F ) supp .0. ) |
| 36 | 33 35 | sseqtrrdi | |- ( ph -> ( H supp .0. ) C_ ( ( F u. H ) supp .0. ) ) |
| 37 | 36 9 | sseqtrrdi | |- ( ph -> ( H supp .0. ) C_ W ) |
| 38 | 11 6 22 37 | gsumcllem | |- ( ( ph /\ W = (/) ) -> H = ( x e. A |-> .0. ) ) |
| 39 | 38 | oveq2d | |- ( ( ph /\ W = (/) ) -> ( G gsum H ) = ( G gsum ( x e. A |-> .0. ) ) ) |
| 40 | 39 30 | eqtrd | |- ( ( ph /\ W = (/) ) -> ( G gsum H ) = .0. ) |
| 41 | 31 40 | oveq12d | |- ( ( ph /\ W = (/) ) -> ( ( G gsum F ) .+ ( G gsum H ) ) = ( .0. .+ .0. ) ) |
| 42 | 6 | adantr | |- ( ( ph /\ W = (/) ) -> A e. V ) |
| 43 | 17 | ad2antrr | |- ( ( ( ph /\ W = (/) ) /\ x e. A ) -> .0. e. B ) |
| 44 | 42 43 43 26 38 | offval2 | |- ( ( ph /\ W = (/) ) -> ( F oF .+ H ) = ( x e. A |-> ( .0. .+ .0. ) ) ) |
| 45 | 20 | mpteq2dv | |- ( ( ph /\ W = (/) ) -> ( x e. A |-> ( .0. .+ .0. ) ) = ( x e. A |-> .0. ) ) |
| 46 | 44 45 | eqtrd | |- ( ( ph /\ W = (/) ) -> ( F oF .+ H ) = ( x e. A |-> .0. ) ) |
| 47 | 46 | oveq2d | |- ( ( ph /\ W = (/) ) -> ( G gsum ( F oF .+ H ) ) = ( G gsum ( x e. A |-> .0. ) ) ) |
| 48 | 47 30 | eqtrd | |- ( ( ph /\ W = (/) ) -> ( G gsum ( F oF .+ H ) ) = .0. ) |
| 49 | 20 41 48 | 3eqtr4rd | |- ( ( ph /\ W = (/) ) -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| 50 | 49 | ex | |- ( ph -> ( W = (/) -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) ) |
| 51 | 5 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> G e. Mnd ) |
| 52 | 1 3 | mndcl | |- ( ( G e. Mnd /\ z e. B /\ w e. B ) -> ( z .+ w ) e. B ) |
| 53 | 52 | 3expb | |- ( ( G e. Mnd /\ ( z e. B /\ w e. B ) ) -> ( z .+ w ) e. B ) |
| 54 | 51 53 | sylan | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ ( z e. B /\ w e. B ) ) -> ( z .+ w ) e. B ) |
| 55 | 54 | caovclg | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ ( x e. B /\ y e. B ) ) -> ( x .+ y ) e. B ) |
| 56 | simprl | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( # ` W ) e. NN ) |
|
| 57 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 58 | 56 57 | eleqtrdi | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( # ` W ) e. ( ZZ>= ` 1 ) ) |
| 59 | 10 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> F : A --> B ) |
| 60 | f1of1 | |- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> f : ( 1 ... ( # ` W ) ) -1-1-> W ) |
|
| 61 | 60 | ad2antll | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> f : ( 1 ... ( # ` W ) ) -1-1-> W ) |
| 62 | suppssdm | |- ( ( F u. H ) supp .0. ) C_ dom ( F u. H ) |
|
| 63 | 62 | a1i | |- ( ph -> ( ( F u. H ) supp .0. ) C_ dom ( F u. H ) ) |
| 64 | 9 | a1i | |- ( ph -> W = ( ( F u. H ) supp .0. ) ) |
| 65 | dmun | |- dom ( F u. H ) = ( dom F u. dom H ) |
|
| 66 | 10 | fdmd | |- ( ph -> dom F = A ) |
| 67 | 11 | fdmd | |- ( ph -> dom H = A ) |
| 68 | 66 67 | uneq12d | |- ( ph -> ( dom F u. dom H ) = ( A u. A ) ) |
| 69 | unidm | |- ( A u. A ) = A |
|
| 70 | 68 69 | eqtrdi | |- ( ph -> ( dom F u. dom H ) = A ) |
| 71 | 65 70 | eqtr2id | |- ( ph -> A = dom ( F u. H ) ) |
| 72 | 63 64 71 | 3sstr4d | |- ( ph -> W C_ A ) |
| 73 | 72 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> W C_ A ) |
| 74 | f1ss | |- ( ( f : ( 1 ... ( # ` W ) ) -1-1-> W /\ W C_ A ) -> f : ( 1 ... ( # ` W ) ) -1-1-> A ) |
|
| 75 | 61 73 74 | syl2anc | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> f : ( 1 ... ( # ` W ) ) -1-1-> A ) |
| 76 | f1f | |- ( f : ( 1 ... ( # ` W ) ) -1-1-> A -> f : ( 1 ... ( # ` W ) ) --> A ) |
|
| 77 | 75 76 | syl | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> f : ( 1 ... ( # ` W ) ) --> A ) |
| 78 | fco | |- ( ( F : A --> B /\ f : ( 1 ... ( # ` W ) ) --> A ) -> ( F o. f ) : ( 1 ... ( # ` W ) ) --> B ) |
|
| 79 | 59 77 78 | syl2anc | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( F o. f ) : ( 1 ... ( # ` W ) ) --> B ) |
| 80 | 79 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. f ) ` k ) e. B ) |
| 81 | 11 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> H : A --> B ) |
| 82 | fco | |- ( ( H : A --> B /\ f : ( 1 ... ( # ` W ) ) --> A ) -> ( H o. f ) : ( 1 ... ( # ` W ) ) --> B ) |
|
| 83 | 81 77 82 | syl2anc | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( H o. f ) : ( 1 ... ( # ` W ) ) --> B ) |
| 84 | 83 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( H o. f ) ` k ) e. B ) |
| 85 | 59 | ffnd | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> F Fn A ) |
| 86 | 81 | ffnd | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> H Fn A ) |
| 87 | 6 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> A e. V ) |
| 88 | ovexd | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( 1 ... ( # ` W ) ) e. _V ) |
|
| 89 | inidm | |- ( A i^i A ) = A |
|
| 90 | 85 86 77 87 87 88 89 | ofco | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( ( F oF .+ H ) o. f ) = ( ( F o. f ) oF .+ ( H o. f ) ) ) |
| 91 | 90 | fveq1d | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( ( ( F oF .+ H ) o. f ) ` k ) = ( ( ( F o. f ) oF .+ ( H o. f ) ) ` k ) ) |
| 92 | 91 | adantr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( ( F oF .+ H ) o. f ) ` k ) = ( ( ( F o. f ) oF .+ ( H o. f ) ) ` k ) ) |
| 93 | fnfco | |- ( ( F Fn A /\ f : ( 1 ... ( # ` W ) ) --> A ) -> ( F o. f ) Fn ( 1 ... ( # ` W ) ) ) |
|
| 94 | 85 77 93 | syl2anc | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( F o. f ) Fn ( 1 ... ( # ` W ) ) ) |
| 95 | fnfco | |- ( ( H Fn A /\ f : ( 1 ... ( # ` W ) ) --> A ) -> ( H o. f ) Fn ( 1 ... ( # ` W ) ) ) |
|
| 96 | 86 77 95 | syl2anc | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( H o. f ) Fn ( 1 ... ( # ` W ) ) ) |
| 97 | inidm | |- ( ( 1 ... ( # ` W ) ) i^i ( 1 ... ( # ` W ) ) ) = ( 1 ... ( # ` W ) ) |
|
| 98 | eqidd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. f ) ` k ) = ( ( F o. f ) ` k ) ) |
|
| 99 | eqidd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( H o. f ) ` k ) = ( ( H o. f ) ` k ) ) |
|
| 100 | 94 96 88 88 97 98 99 | ofval | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( ( F o. f ) oF .+ ( H o. f ) ) ` k ) = ( ( ( F o. f ) ` k ) .+ ( ( H o. f ) ` k ) ) ) |
| 101 | 92 100 | eqtrd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( ( F oF .+ H ) o. f ) ` k ) = ( ( ( F o. f ) ` k ) .+ ( ( H o. f ) ` k ) ) ) |
| 102 | 5 | ad2antrr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> G e. Mnd ) |
| 103 | elfzouz | |- ( n e. ( 1 ..^ ( # ` W ) ) -> n e. ( ZZ>= ` 1 ) ) |
|
| 104 | 103 | adantl | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> n e. ( ZZ>= ` 1 ) ) |
| 105 | elfzouz2 | |- ( n e. ( 1 ..^ ( # ` W ) ) -> ( # ` W ) e. ( ZZ>= ` n ) ) |
|
| 106 | 105 | adantl | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( # ` W ) e. ( ZZ>= ` n ) ) |
| 107 | fzss2 | |- ( ( # ` W ) e. ( ZZ>= ` n ) -> ( 1 ... n ) C_ ( 1 ... ( # ` W ) ) ) |
|
| 108 | 106 107 | syl | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( 1 ... n ) C_ ( 1 ... ( # ` W ) ) ) |
| 109 | 108 | sselda | |- ( ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) /\ k e. ( 1 ... n ) ) -> k e. ( 1 ... ( # ` W ) ) ) |
| 110 | 80 | adantlr | |- ( ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. f ) ` k ) e. B ) |
| 111 | 109 110 | syldan | |- ( ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) /\ k e. ( 1 ... n ) ) -> ( ( F o. f ) ` k ) e. B ) |
| 112 | 1 3 | mndcl | |- ( ( G e. Mnd /\ k e. B /\ x e. B ) -> ( k .+ x ) e. B ) |
| 113 | 112 | 3expb | |- ( ( G e. Mnd /\ ( k e. B /\ x e. B ) ) -> ( k .+ x ) e. B ) |
| 114 | 102 113 | sylan | |- ( ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) /\ ( k e. B /\ x e. B ) ) -> ( k .+ x ) e. B ) |
| 115 | 104 111 114 | seqcl | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( seq 1 ( .+ , ( F o. f ) ) ` n ) e. B ) |
| 116 | 84 | adantlr | |- ( ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) /\ k e. ( 1 ... ( # ` W ) ) ) -> ( ( H o. f ) ` k ) e. B ) |
| 117 | 109 116 | syldan | |- ( ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) /\ k e. ( 1 ... n ) ) -> ( ( H o. f ) ` k ) e. B ) |
| 118 | 104 117 114 | seqcl | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( seq 1 ( .+ , ( H o. f ) ) ` n ) e. B ) |
| 119 | fzofzp1 | |- ( n e. ( 1 ..^ ( # ` W ) ) -> ( n + 1 ) e. ( 1 ... ( # ` W ) ) ) |
|
| 120 | ffvelcdm | |- ( ( ( F o. f ) : ( 1 ... ( # ` W ) ) --> B /\ ( n + 1 ) e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. f ) ` ( n + 1 ) ) e. B ) |
|
| 121 | 79 119 120 | syl2an | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( F o. f ) ` ( n + 1 ) ) e. B ) |
| 122 | ffvelcdm | |- ( ( ( H o. f ) : ( 1 ... ( # ` W ) ) --> B /\ ( n + 1 ) e. ( 1 ... ( # ` W ) ) ) -> ( ( H o. f ) ` ( n + 1 ) ) e. B ) |
|
| 123 | 83 119 122 | syl2an | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( H o. f ) ` ( n + 1 ) ) e. B ) |
| 124 | fvco3 | |- ( ( f : ( 1 ... ( # ` W ) ) --> A /\ ( n + 1 ) e. ( 1 ... ( # ` W ) ) ) -> ( ( F o. f ) ` ( n + 1 ) ) = ( F ` ( f ` ( n + 1 ) ) ) ) |
|
| 125 | 77 119 124 | syl2an | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( F o. f ) ` ( n + 1 ) ) = ( F ` ( f ` ( n + 1 ) ) ) ) |
| 126 | fveq2 | |- ( k = ( f ` ( n + 1 ) ) -> ( F ` k ) = ( F ` ( f ` ( n + 1 ) ) ) ) |
|
| 127 | 126 | eleq1d | |- ( k = ( f ` ( n + 1 ) ) -> ( ( F ` k ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) <-> ( F ` ( f ` ( n + 1 ) ) ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) ) ) |
| 128 | 15 | expr | |- ( ( ph /\ x C_ A ) -> ( k e. ( A \ x ) -> ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) ) |
| 129 | 128 | ralrimiv | |- ( ( ph /\ x C_ A ) -> A. k e. ( A \ x ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) |
| 130 | 129 | ex | |- ( ph -> ( x C_ A -> A. k e. ( A \ x ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) ) |
| 131 | 130 | alrimiv | |- ( ph -> A. x ( x C_ A -> A. k e. ( A \ x ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) ) |
| 132 | 131 | ad2antrr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> A. x ( x C_ A -> A. k e. ( A \ x ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) ) |
| 133 | imassrn | |- ( f " ( 1 ... n ) ) C_ ran f |
|
| 134 | 77 | adantr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> f : ( 1 ... ( # ` W ) ) --> A ) |
| 135 | 134 | frnd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ran f C_ A ) |
| 136 | 133 135 | sstrid | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( f " ( 1 ... n ) ) C_ A ) |
| 137 | vex | |- f e. _V |
|
| 138 | 137 | imaex | |- ( f " ( 1 ... n ) ) e. _V |
| 139 | sseq1 | |- ( x = ( f " ( 1 ... n ) ) -> ( x C_ A <-> ( f " ( 1 ... n ) ) C_ A ) ) |
|
| 140 | difeq2 | |- ( x = ( f " ( 1 ... n ) ) -> ( A \ x ) = ( A \ ( f " ( 1 ... n ) ) ) ) |
|
| 141 | reseq2 | |- ( x = ( f " ( 1 ... n ) ) -> ( H |` x ) = ( H |` ( f " ( 1 ... n ) ) ) ) |
|
| 142 | 141 | oveq2d | |- ( x = ( f " ( 1 ... n ) ) -> ( G gsum ( H |` x ) ) = ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) ) |
| 143 | 142 | sneqd | |- ( x = ( f " ( 1 ... n ) ) -> { ( G gsum ( H |` x ) ) } = { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) |
| 144 | 143 | fveq2d | |- ( x = ( f " ( 1 ... n ) ) -> ( Z ` { ( G gsum ( H |` x ) ) } ) = ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) ) |
| 145 | 144 | eleq2d | |- ( x = ( f " ( 1 ... n ) ) -> ( ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) <-> ( F ` k ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) ) ) |
| 146 | 140 145 | raleqbidv | |- ( x = ( f " ( 1 ... n ) ) -> ( A. k e. ( A \ x ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) <-> A. k e. ( A \ ( f " ( 1 ... n ) ) ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) ) ) |
| 147 | 139 146 | imbi12d | |- ( x = ( f " ( 1 ... n ) ) -> ( ( x C_ A -> A. k e. ( A \ x ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) <-> ( ( f " ( 1 ... n ) ) C_ A -> A. k e. ( A \ ( f " ( 1 ... n ) ) ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) ) ) ) |
| 148 | 138 147 | spcv | |- ( A. x ( x C_ A -> A. k e. ( A \ x ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` x ) ) } ) ) -> ( ( f " ( 1 ... n ) ) C_ A -> A. k e. ( A \ ( f " ( 1 ... n ) ) ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) ) ) |
| 149 | 132 136 148 | sylc | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> A. k e. ( A \ ( f " ( 1 ... n ) ) ) ( F ` k ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) ) |
| 150 | ffvelcdm | |- ( ( f : ( 1 ... ( # ` W ) ) --> A /\ ( n + 1 ) e. ( 1 ... ( # ` W ) ) ) -> ( f ` ( n + 1 ) ) e. A ) |
|
| 151 | 77 119 150 | syl2an | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( f ` ( n + 1 ) ) e. A ) |
| 152 | fzp1nel | |- -. ( n + 1 ) e. ( 1 ... n ) |
|
| 153 | 75 | adantr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> f : ( 1 ... ( # ` W ) ) -1-1-> A ) |
| 154 | 119 | adantl | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( n + 1 ) e. ( 1 ... ( # ` W ) ) ) |
| 155 | f1elima | |- ( ( f : ( 1 ... ( # ` W ) ) -1-1-> A /\ ( n + 1 ) e. ( 1 ... ( # ` W ) ) /\ ( 1 ... n ) C_ ( 1 ... ( # ` W ) ) ) -> ( ( f ` ( n + 1 ) ) e. ( f " ( 1 ... n ) ) <-> ( n + 1 ) e. ( 1 ... n ) ) ) |
|
| 156 | 153 154 108 155 | syl3anc | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( f ` ( n + 1 ) ) e. ( f " ( 1 ... n ) ) <-> ( n + 1 ) e. ( 1 ... n ) ) ) |
| 157 | 152 156 | mtbiri | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> -. ( f ` ( n + 1 ) ) e. ( f " ( 1 ... n ) ) ) |
| 158 | 151 157 | eldifd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( f ` ( n + 1 ) ) e. ( A \ ( f " ( 1 ... n ) ) ) ) |
| 159 | 127 149 158 | rspcdva | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( F ` ( f ` ( n + 1 ) ) ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) ) |
| 160 | 125 159 | eqeltrd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( F o. f ) ` ( n + 1 ) ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) ) |
| 161 | 138 | a1i | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( f " ( 1 ... n ) ) e. _V ) |
| 162 | 11 | ad2antrr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> H : A --> B ) |
| 163 | 162 136 | fssresd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( H |` ( f " ( 1 ... n ) ) ) : ( f " ( 1 ... n ) ) --> B ) |
| 164 | 13 | ad2antrr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ran H C_ ( Z ` ran H ) ) |
| 165 | resss | |- ( H |` ( f " ( 1 ... n ) ) ) C_ H |
|
| 166 | 165 | rnssi | |- ran ( H |` ( f " ( 1 ... n ) ) ) C_ ran H |
| 167 | 4 | cntzidss | |- ( ( ran H C_ ( Z ` ran H ) /\ ran ( H |` ( f " ( 1 ... n ) ) ) C_ ran H ) -> ran ( H |` ( f " ( 1 ... n ) ) ) C_ ( Z ` ran ( H |` ( f " ( 1 ... n ) ) ) ) ) |
| 168 | 164 166 167 | sylancl | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ran ( H |` ( f " ( 1 ... n ) ) ) C_ ( Z ` ran ( H |` ( f " ( 1 ... n ) ) ) ) ) |
| 169 | 104 57 | eleqtrrdi | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> n e. NN ) |
| 170 | f1ores | |- ( ( f : ( 1 ... ( # ` W ) ) -1-1-> A /\ ( 1 ... n ) C_ ( 1 ... ( # ` W ) ) ) -> ( f |` ( 1 ... n ) ) : ( 1 ... n ) -1-1-onto-> ( f " ( 1 ... n ) ) ) |
|
| 171 | 153 108 170 | syl2anc | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( f |` ( 1 ... n ) ) : ( 1 ... n ) -1-1-onto-> ( f " ( 1 ... n ) ) ) |
| 172 | f1of1 | |- ( ( f |` ( 1 ... n ) ) : ( 1 ... n ) -1-1-onto-> ( f " ( 1 ... n ) ) -> ( f |` ( 1 ... n ) ) : ( 1 ... n ) -1-1-> ( f " ( 1 ... n ) ) ) |
|
| 173 | 171 172 | syl | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( f |` ( 1 ... n ) ) : ( 1 ... n ) -1-1-> ( f " ( 1 ... n ) ) ) |
| 174 | suppssdm | |- ( ( H |` ( f " ( 1 ... n ) ) ) supp .0. ) C_ dom ( H |` ( f " ( 1 ... n ) ) ) |
|
| 175 | dmres | |- dom ( H |` ( f " ( 1 ... n ) ) ) = ( ( f " ( 1 ... n ) ) i^i dom H ) |
|
| 176 | 175 | a1i | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> dom ( H |` ( f " ( 1 ... n ) ) ) = ( ( f " ( 1 ... n ) ) i^i dom H ) ) |
| 177 | 174 176 | sseqtrid | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( H |` ( f " ( 1 ... n ) ) ) supp .0. ) C_ ( ( f " ( 1 ... n ) ) i^i dom H ) ) |
| 178 | inss1 | |- ( ( f " ( 1 ... n ) ) i^i dom H ) C_ ( f " ( 1 ... n ) ) |
|
| 179 | df-ima | |- ( f " ( 1 ... n ) ) = ran ( f |` ( 1 ... n ) ) |
|
| 180 | 179 | a1i | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( f " ( 1 ... n ) ) = ran ( f |` ( 1 ... n ) ) ) |
| 181 | 178 180 | sseqtrid | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( f " ( 1 ... n ) ) i^i dom H ) C_ ran ( f |` ( 1 ... n ) ) ) |
| 182 | 177 181 | sstrd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( H |` ( f " ( 1 ... n ) ) ) supp .0. ) C_ ran ( f |` ( 1 ... n ) ) ) |
| 183 | eqid | |- ( ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) supp .0. ) = ( ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) supp .0. ) |
|
| 184 | 1 2 3 4 102 161 163 168 169 173 182 183 | gsumval3 | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) = ( seq 1 ( .+ , ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) ) ` n ) ) |
| 185 | 179 | eqimss2i | |- ran ( f |` ( 1 ... n ) ) C_ ( f " ( 1 ... n ) ) |
| 186 | cores | |- ( ran ( f |` ( 1 ... n ) ) C_ ( f " ( 1 ... n ) ) -> ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) = ( H o. ( f |` ( 1 ... n ) ) ) ) |
|
| 187 | 185 186 | ax-mp | |- ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) = ( H o. ( f |` ( 1 ... n ) ) ) |
| 188 | resco | |- ( ( H o. f ) |` ( 1 ... n ) ) = ( H o. ( f |` ( 1 ... n ) ) ) |
|
| 189 | 187 188 | eqtr4i | |- ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) = ( ( H o. f ) |` ( 1 ... n ) ) |
| 190 | 189 | fveq1i | |- ( ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) ` k ) = ( ( ( H o. f ) |` ( 1 ... n ) ) ` k ) |
| 191 | fvres | |- ( k e. ( 1 ... n ) -> ( ( ( H o. f ) |` ( 1 ... n ) ) ` k ) = ( ( H o. f ) ` k ) ) |
|
| 192 | 190 191 | eqtrid | |- ( k e. ( 1 ... n ) -> ( ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) ` k ) = ( ( H o. f ) ` k ) ) |
| 193 | 192 | adantl | |- ( ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) /\ k e. ( 1 ... n ) ) -> ( ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) ` k ) = ( ( H o. f ) ` k ) ) |
| 194 | 104 193 | seqfveq | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( seq 1 ( .+ , ( ( H |` ( f " ( 1 ... n ) ) ) o. ( f |` ( 1 ... n ) ) ) ) ` n ) = ( seq 1 ( .+ , ( H o. f ) ) ` n ) ) |
| 195 | 184 194 | eqtr2d | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( seq 1 ( .+ , ( H o. f ) ) ` n ) = ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) ) |
| 196 | fvex | |- ( seq 1 ( .+ , ( H o. f ) ) ` n ) e. _V |
|
| 197 | 196 | elsn | |- ( ( seq 1 ( .+ , ( H o. f ) ) ` n ) e. { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } <-> ( seq 1 ( .+ , ( H o. f ) ) ` n ) = ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) ) |
| 198 | 195 197 | sylibr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( seq 1 ( .+ , ( H o. f ) ) ` n ) e. { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) |
| 199 | 3 4 | cntzi | |- ( ( ( ( F o. f ) ` ( n + 1 ) ) e. ( Z ` { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) /\ ( seq 1 ( .+ , ( H o. f ) ) ` n ) e. { ( G gsum ( H |` ( f " ( 1 ... n ) ) ) ) } ) -> ( ( ( F o. f ) ` ( n + 1 ) ) .+ ( seq 1 ( .+ , ( H o. f ) ) ` n ) ) = ( ( seq 1 ( .+ , ( H o. f ) ) ` n ) .+ ( ( F o. f ) ` ( n + 1 ) ) ) ) |
| 200 | 160 198 199 | syl2anc | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( ( F o. f ) ` ( n + 1 ) ) .+ ( seq 1 ( .+ , ( H o. f ) ) ` n ) ) = ( ( seq 1 ( .+ , ( H o. f ) ) ` n ) .+ ( ( F o. f ) ` ( n + 1 ) ) ) ) |
| 201 | 200 | eqcomd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( seq 1 ( .+ , ( H o. f ) ) ` n ) .+ ( ( F o. f ) ` ( n + 1 ) ) ) = ( ( ( F o. f ) ` ( n + 1 ) ) .+ ( seq 1 ( .+ , ( H o. f ) ) ` n ) ) ) |
| 202 | 1 3 102 115 118 121 123 201 | mnd4g | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ n e. ( 1 ..^ ( # ` W ) ) ) -> ( ( ( seq 1 ( .+ , ( F o. f ) ) ` n ) .+ ( seq 1 ( .+ , ( H o. f ) ) ` n ) ) .+ ( ( ( F o. f ) ` ( n + 1 ) ) .+ ( ( H o. f ) ` ( n + 1 ) ) ) ) = ( ( ( seq 1 ( .+ , ( F o. f ) ) ` n ) .+ ( ( F o. f ) ` ( n + 1 ) ) ) .+ ( ( seq 1 ( .+ , ( H o. f ) ) ` n ) .+ ( ( H o. f ) ` ( n + 1 ) ) ) ) ) |
| 203 | 55 55 58 80 84 101 202 | seqcaopr3 | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( seq 1 ( .+ , ( ( F oF .+ H ) o. f ) ) ` ( # ` W ) ) = ( ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) .+ ( seq 1 ( .+ , ( H o. f ) ) ` ( # ` W ) ) ) ) |
| 204 | 54 59 81 87 87 89 | off | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( F oF .+ H ) : A --> B ) |
| 205 | 14 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ran ( F oF .+ H ) C_ ( Z ` ran ( F oF .+ H ) ) ) |
| 206 | 51 113 | sylan | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ ( k e. B /\ x e. B ) ) -> ( k .+ x ) e. B ) |
| 207 | 206 59 81 87 87 89 | off | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( F oF .+ H ) : A --> B ) |
| 208 | eldifi | |- ( x e. ( A \ ran f ) -> x e. A ) |
|
| 209 | eqidd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
|
| 210 | eqidd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. A ) -> ( H ` x ) = ( H ` x ) ) |
|
| 211 | 85 86 87 87 89 209 210 | ofval | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. A ) -> ( ( F oF .+ H ) ` x ) = ( ( F ` x ) .+ ( H ` x ) ) ) |
| 212 | 208 211 | sylan2 | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( A \ ran f ) ) -> ( ( F oF .+ H ) ` x ) = ( ( F ` x ) .+ ( H ` x ) ) ) |
| 213 | 24 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( F supp .0. ) C_ ( ( F u. H ) supp .0. ) ) |
| 214 | f1ofo | |- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> f : ( 1 ... ( # ` W ) ) -onto-> W ) |
|
| 215 | forn | |- ( f : ( 1 ... ( # ` W ) ) -onto-> W -> ran f = W ) |
|
| 216 | 214 215 | syl | |- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> ran f = W ) |
| 217 | 216 9 | eqtrdi | |- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> ran f = ( ( F u. H ) supp .0. ) ) |
| 218 | 217 | sseq2d | |- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> ( ( F supp .0. ) C_ ran f <-> ( F supp .0. ) C_ ( ( F u. H ) supp .0. ) ) ) |
| 219 | 218 | ad2antll | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( ( F supp .0. ) C_ ran f <-> ( F supp .0. ) C_ ( ( F u. H ) supp .0. ) ) ) |
| 220 | 213 219 | mpbird | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( F supp .0. ) C_ ran f ) |
| 221 | 21 | a1i | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> .0. e. _V ) |
| 222 | 59 220 87 221 | suppssr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( A \ ran f ) ) -> ( F ` x ) = .0. ) |
| 223 | 33 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( H supp .0. ) C_ ( ( H u. F ) supp .0. ) ) |
| 224 | 223 35 | sseqtrrdi | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( H supp .0. ) C_ ( ( F u. H ) supp .0. ) ) |
| 225 | 217 | sseq2d | |- ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> ( ( H supp .0. ) C_ ran f <-> ( H supp .0. ) C_ ( ( F u. H ) supp .0. ) ) ) |
| 226 | 225 | ad2antll | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( ( H supp .0. ) C_ ran f <-> ( H supp .0. ) C_ ( ( F u. H ) supp .0. ) ) ) |
| 227 | 224 226 | mpbird | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( H supp .0. ) C_ ran f ) |
| 228 | 81 227 87 221 | suppssr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( A \ ran f ) ) -> ( H ` x ) = .0. ) |
| 229 | 222 228 | oveq12d | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( A \ ran f ) ) -> ( ( F ` x ) .+ ( H ` x ) ) = ( .0. .+ .0. ) ) |
| 230 | 19 | ad2antrr | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( A \ ran f ) ) -> ( .0. .+ .0. ) = .0. ) |
| 231 | 212 229 230 | 3eqtrd | |- ( ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) /\ x e. ( A \ ran f ) ) -> ( ( F oF .+ H ) ` x ) = .0. ) |
| 232 | 207 231 | suppss | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( ( F oF .+ H ) supp .0. ) C_ ran f ) |
| 233 | ovex | |- ( F oF .+ H ) e. _V |
|
| 234 | 233 137 | coex | |- ( ( F oF .+ H ) o. f ) e. _V |
| 235 | suppimacnv | |- ( ( ( ( F oF .+ H ) o. f ) e. _V /\ .0. e. _V ) -> ( ( ( F oF .+ H ) o. f ) supp .0. ) = ( `' ( ( F oF .+ H ) o. f ) " ( _V \ { .0. } ) ) ) |
|
| 236 | 235 | eqcomd | |- ( ( ( ( F oF .+ H ) o. f ) e. _V /\ .0. e. _V ) -> ( `' ( ( F oF .+ H ) o. f ) " ( _V \ { .0. } ) ) = ( ( ( F oF .+ H ) o. f ) supp .0. ) ) |
| 237 | 234 21 236 | mp2an | |- ( `' ( ( F oF .+ H ) o. f ) " ( _V \ { .0. } ) ) = ( ( ( F oF .+ H ) o. f ) supp .0. ) |
| 238 | 1 2 3 4 51 87 204 205 56 75 232 237 | gsumval3 | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( G gsum ( F oF .+ H ) ) = ( seq 1 ( .+ , ( ( F oF .+ H ) o. f ) ) ` ( # ` W ) ) ) |
| 239 | 12 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ran F C_ ( Z ` ran F ) ) |
| 240 | eqid | |- ( ( F o. f ) supp .0. ) = ( ( F o. f ) supp .0. ) |
|
| 241 | 1 2 3 4 51 87 59 239 56 75 220 240 | gsumval3 | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) ) |
| 242 | 13 | adantr | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ran H C_ ( Z ` ran H ) ) |
| 243 | eqid | |- ( ( H o. f ) supp .0. ) = ( ( H o. f ) supp .0. ) |
|
| 244 | 1 2 3 4 51 87 81 242 56 75 227 243 | gsumval3 | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( G gsum H ) = ( seq 1 ( .+ , ( H o. f ) ) ` ( # ` W ) ) ) |
| 245 | 241 244 | oveq12d | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( ( G gsum F ) .+ ( G gsum H ) ) = ( ( seq 1 ( .+ , ( F o. f ) ) ` ( # ` W ) ) .+ ( seq 1 ( .+ , ( H o. f ) ) ` ( # ` W ) ) ) ) |
| 246 | 203 238 245 | 3eqtr4d | |- ( ( ph /\ ( ( # ` W ) e. NN /\ f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| 247 | 246 | expr | |- ( ( ph /\ ( # ` W ) e. NN ) -> ( f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) ) |
| 248 | 247 | exlimdv | |- ( ( ph /\ ( # ` W ) e. NN ) -> ( E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) ) |
| 249 | 248 | expimpd | |- ( ph -> ( ( ( # ` W ) e. NN /\ E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) ) |
| 250 | 7 8 | fsuppun | |- ( ph -> ( ( F u. H ) supp .0. ) e. Fin ) |
| 251 | 9 250 | eqeltrid | |- ( ph -> W e. Fin ) |
| 252 | fz1f1o | |- ( W e. Fin -> ( W = (/) \/ ( ( # ` W ) e. NN /\ E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) ) |
|
| 253 | 251 252 | syl | |- ( ph -> ( W = (/) \/ ( ( # ` W ) e. NN /\ E. f f : ( 1 ... ( # ` W ) ) -1-1-onto-> W ) ) ) |
| 254 | 50 249 253 | mpjaod | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |