This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted first member of a class composition. (Contributed by NM, 12-Oct-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cores | ⊢ ( ran 𝐵 ⊆ 𝐶 → ( ( 𝐴 ↾ 𝐶 ) ∘ 𝐵 ) = ( 𝐴 ∘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑧 ∈ V | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 1 2 | brelrn | ⊢ ( 𝑧 𝐵 𝑦 → 𝑦 ∈ ran 𝐵 ) |
| 4 | ssel | ⊢ ( ran 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ ran 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 5 | vex | ⊢ 𝑥 ∈ V | |
| 6 | 5 | brresi | ⊢ ( 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑦 𝐴 𝑥 ) ) |
| 7 | 6 | baib | ⊢ ( 𝑦 ∈ 𝐶 → ( 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ↔ 𝑦 𝐴 𝑥 ) ) |
| 8 | 3 4 7 | syl56 | ⊢ ( ran 𝐵 ⊆ 𝐶 → ( 𝑧 𝐵 𝑦 → ( 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ↔ 𝑦 𝐴 𝑥 ) ) ) |
| 9 | 8 | pm5.32d | ⊢ ( ran 𝐵 ⊆ 𝐶 → ( ( 𝑧 𝐵 𝑦 ∧ 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ) ↔ ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) ) |
| 10 | 9 | exbidv | ⊢ ( ran 𝐵 ⊆ 𝐶 → ( ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ) ↔ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) ) ) |
| 11 | 10 | opabbidv | ⊢ ( ran 𝐵 ⊆ 𝐶 → { 〈 𝑧 , 𝑥 〉 ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ) } = { 〈 𝑧 , 𝑥 〉 ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) } ) |
| 12 | df-co | ⊢ ( ( 𝐴 ↾ 𝐶 ) ∘ 𝐵 ) = { 〈 𝑧 , 𝑥 〉 ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 ( 𝐴 ↾ 𝐶 ) 𝑥 ) } | |
| 13 | df-co | ⊢ ( 𝐴 ∘ 𝐵 ) = { 〈 𝑧 , 𝑥 〉 ∣ ∃ 𝑦 ( 𝑧 𝐵 𝑦 ∧ 𝑦 𝐴 𝑥 ) } | |
| 14 | 11 12 13 | 3eqtr4g | ⊢ ( ran 𝐵 ⊆ 𝐶 → ( ( 𝐴 ↾ 𝐶 ) ∘ 𝐵 ) = ( 𝐴 ∘ 𝐵 ) ) |