This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of two finitely supported functions is finitely supported (but not necessarily a function!). (Contributed by AV, 3-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppun.f | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| fsuppun.g | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) | ||
| Assertion | fsuppun | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppun.f | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| 2 | fsuppun.g | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) | |
| 3 | cnvun | ⊢ ◡ ( 𝐹 ∪ 𝐺 ) = ( ◡ 𝐹 ∪ ◡ 𝐺 ) | |
| 4 | 3 | imaeq1i | ⊢ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 ∪ ◡ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) |
| 5 | imaundir | ⊢ ( ( ◡ 𝐹 ∪ ◡ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) | |
| 6 | 4 5 | eqtri | ⊢ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) = ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) |
| 7 | unexb | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) ↔ ( 𝐹 ∪ 𝐺 ) ∈ V ) | |
| 8 | simpl | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → 𝐹 ∈ V ) | |
| 9 | 7 8 | sylbir | ⊢ ( ( 𝐹 ∪ 𝐺 ) ∈ V → 𝐹 ∈ V ) |
| 10 | suppimacnv | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) | |
| 11 | 9 10 | sylan | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝐹 supp 𝑍 ) = ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ) |
| 12 | 11 | eqcomd | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) = ( 𝐹 supp 𝑍 ) ) |
| 13 | 12 | adantr | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) = ( 𝐹 supp 𝑍 ) ) |
| 14 | 1 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 15 | 14 | adantl | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 16 | 13 15 | eqeltrd | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
| 17 | simpr | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ) → 𝐺 ∈ V ) | |
| 18 | 7 17 | sylbir | ⊢ ( ( 𝐹 ∪ 𝐺 ) ∈ V → 𝐺 ∈ V ) |
| 19 | suppimacnv | ⊢ ( ( 𝐺 ∈ V ∧ 𝑍 ∈ V ) → ( 𝐺 supp 𝑍 ) = ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) | |
| 20 | 19 | eqcomd | ⊢ ( ( 𝐺 ∈ V ∧ 𝑍 ∈ V ) → ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) = ( 𝐺 supp 𝑍 ) ) |
| 21 | 18 20 | sylan | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) = ( 𝐺 supp 𝑍 ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) = ( 𝐺 supp 𝑍 ) ) |
| 23 | 2 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐺 supp 𝑍 ) ∈ Fin ) |
| 24 | 23 | adantl | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( 𝐺 supp 𝑍 ) ∈ Fin ) |
| 25 | 22 24 | eqeltrd | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
| 26 | unfi | ⊢ ( ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ∧ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) → ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin ) | |
| 27 | 16 25 26 | syl2anc | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( ◡ 𝐹 “ ( V ∖ { 𝑍 } ) ) ∪ ( ◡ 𝐺 “ ( V ∖ { 𝑍 } ) ) ) ∈ Fin ) |
| 28 | 6 27 | eqeltrid | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) |
| 29 | suppimacnv | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) = ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ) | |
| 30 | 29 | eleq1d | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ↔ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) ) |
| 31 | 30 | adantr | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ↔ ( ◡ ( 𝐹 ∪ 𝐺 ) “ ( V ∖ { 𝑍 } ) ) ∈ Fin ) ) |
| 32 | 28 31 | mpbird | ⊢ ( ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) ∧ 𝜑 ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
| 33 | 32 | ex | ⊢ ( ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) |
| 34 | supp0prc | ⊢ ( ¬ ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) = ∅ ) | |
| 35 | 0fi | ⊢ ∅ ∈ Fin | |
| 36 | 34 35 | eqeltrdi | ⊢ ( ¬ ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |
| 37 | 36 | a1d | ⊢ ( ¬ ( ( 𝐹 ∪ 𝐺 ) ∈ V ∧ 𝑍 ∈ V ) → ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) ) |
| 38 | 33 37 | pm2.61i | ⊢ ( 𝜑 → ( ( 𝐹 ∪ 𝐺 ) supp 𝑍 ) ∈ Fin ) |