This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1elima | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑌 ) ↔ 𝑋 ∈ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1fn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 2 | fvelimab | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑌 ) ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑌 ) ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑌 ) ↔ ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 5 | ssel | ⊢ ( 𝑌 ⊆ 𝐴 → ( 𝑧 ∈ 𝑌 → 𝑧 ∈ 𝐴 ) ) | |
| 6 | 5 | impac | ⊢ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑌 ) → ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑌 ) ) |
| 7 | f1fveq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ↔ 𝑧 = 𝑋 ) ) | |
| 8 | 7 | ancom2s | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ↔ 𝑧 = 𝑋 ) ) |
| 9 | 8 | biimpd | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑧 = 𝑋 ) ) |
| 10 | 9 | anassrs | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑧 = 𝑋 ) ) |
| 11 | eleq1 | ⊢ ( 𝑧 = 𝑋 → ( 𝑧 ∈ 𝑌 ↔ 𝑋 ∈ 𝑌 ) ) | |
| 12 | 11 | biimpcd | ⊢ ( 𝑧 ∈ 𝑌 → ( 𝑧 = 𝑋 → 𝑋 ∈ 𝑌 ) ) |
| 13 | 10 12 | sylan9 | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
| 14 | 13 | anasss | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
| 15 | 6 14 | sylan2 | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ ( 𝑌 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
| 16 | 15 | anassrs | ⊢ ( ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝑌 ) → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
| 17 | 16 | rexlimdva | ⊢ ( ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
| 18 | 17 | 3impa | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 ∈ 𝑌 ) ) |
| 19 | eqid | ⊢ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) | |
| 20 | fveqeq2 | ⊢ ( 𝑧 = 𝑋 → ( ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) ) | |
| 21 | 20 | rspcev | ⊢ ( ( 𝑋 ∈ 𝑌 ∧ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) → ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 22 | 19 21 | mpan2 | ⊢ ( 𝑋 ∈ 𝑌 → ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 23 | 18 22 | impbid1 | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑌 ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑋 ) ↔ 𝑋 ∈ 𝑌 ) ) |
| 24 | 4 23 | bitrd | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) ∈ ( 𝐹 “ 𝑌 ) ↔ 𝑋 ∈ 𝑌 ) ) |