This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a function operation with another function. (Contributed by Mario Carneiro, 19-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ofco.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| ofco.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | ||
| ofco.3 | ⊢ ( 𝜑 → 𝐻 : 𝐷 ⟶ 𝐶 ) | ||
| ofco.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ofco.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| ofco.6 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) | ||
| ofco.7 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 | ||
| Assertion | ofco | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) = ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofco.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 2 | ofco.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | |
| 3 | ofco.3 | ⊢ ( 𝜑 → 𝐻 : 𝐷 ⟶ 𝐶 ) | |
| 4 | ofco.4 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | ofco.5 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 6 | ofco.6 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑋 ) | |
| 7 | ofco.7 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝐶 | |
| 8 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐶 ) |
| 9 | 3 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐷 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
| 10 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 11 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 12 | 1 2 4 5 7 10 11 | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑦 ∈ 𝐶 ↦ ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 14 | fveq2 | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 15 | 13 14 | oveq12d | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 16 | 8 9 12 15 | fmptco | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 17 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 18 | 7 17 | eqsstrri | ⊢ 𝐶 ⊆ 𝐴 |
| 19 | fss | ⊢ ( ( 𝐻 : 𝐷 ⟶ 𝐶 ∧ 𝐶 ⊆ 𝐴 ) → 𝐻 : 𝐷 ⟶ 𝐴 ) | |
| 20 | 3 18 19 | sylancl | ⊢ ( 𝜑 → 𝐻 : 𝐷 ⟶ 𝐴 ) |
| 21 | fnfco | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐻 : 𝐷 ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐻 ) Fn 𝐷 ) | |
| 22 | 1 20 21 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) Fn 𝐷 ) |
| 23 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 24 | 7 23 | eqsstrri | ⊢ 𝐶 ⊆ 𝐵 |
| 25 | fss | ⊢ ( ( 𝐻 : 𝐷 ⟶ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) → 𝐻 : 𝐷 ⟶ 𝐵 ) | |
| 26 | 3 24 25 | sylancl | ⊢ ( 𝜑 → 𝐻 : 𝐷 ⟶ 𝐵 ) |
| 27 | fnfco | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐻 : 𝐷 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐻 ) Fn 𝐷 ) | |
| 28 | 2 26 27 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ 𝐻 ) Fn 𝐷 ) |
| 29 | inidm | ⊢ ( 𝐷 ∩ 𝐷 ) = 𝐷 | |
| 30 | 3 | ffnd | ⊢ ( 𝜑 → 𝐻 Fn 𝐷 ) |
| 31 | fvco2 | ⊢ ( ( 𝐻 Fn 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 32 | 30 31 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 33 | fvco2 | ⊢ ( ( 𝐻 Fn 𝐷 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) | |
| 34 | 30 33 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 35 | 22 28 6 6 29 32 34 | offval | ⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) = ( 𝑥 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) ) |
| 36 | 16 35 | eqtr4d | ⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) ∘ 𝐻 ) = ( ( 𝐹 ∘ 𝐻 ) ∘f 𝑅 ( 𝐺 ∘ 𝐻 ) ) ) |