This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evlseu , give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 26-Jul-2019) (Revised by AV, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlslem1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| evlslem1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlslem1.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| evlslem1.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| evlslem1.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑆 ) | ||
| evlslem1.x | ⊢ ↑ = ( .g ‘ 𝑇 ) | ||
| evlslem1.m | ⊢ · = ( .r ‘ 𝑆 ) | ||
| evlslem1.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| evlslem1.e | ⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) | ||
| evlslem1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| evlslem1.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlslem1.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlslem1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | ||
| evlslem1.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | ||
| evlslem1.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| Assertion | evlslem1 | ⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( 𝐸 ∘ 𝐴 ) = 𝐹 ∧ ( 𝐸 ∘ 𝑉 ) = 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem1.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | evlslem1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | evlslem1.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 4 | evlslem1.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 5 | evlslem1.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑆 ) | |
| 6 | evlslem1.x | ⊢ ↑ = ( .g ‘ 𝑇 ) | |
| 7 | evlslem1.m | ⊢ · = ( .r ‘ 𝑆 ) | |
| 8 | evlslem1.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 9 | evlslem1.e | ⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) | |
| 10 | evlslem1.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 11 | evlslem1.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 12 | evlslem1.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 13 | evlslem1.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 14 | evlslem1.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | |
| 15 | evlslem1.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 16 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 17 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 18 | eqid | ⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) | |
| 19 | 11 | crngringd | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 20 | 1 10 19 | mplringd | ⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
| 21 | 12 | crngringd | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 22 | 2fveq3 | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) ) ) | |
| 23 | fveq2 | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) | |
| 24 | 22 23 | eqeq12d | ⊢ ( 𝑥 = ( 1r ‘ 𝑅 ) → ( ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) ) |
| 25 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 26 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 27 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐼 ∈ 𝑊 ) |
| 28 | 19 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 29 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) | |
| 30 | 1 4 25 26 15 27 28 29 | mplascl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐴 ‘ 𝑥 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) |
| 31 | 30 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐸 ‘ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 32 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ CRing ) |
| 33 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑆 ∈ CRing ) |
| 34 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 35 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 36 | 4 | psrbag0 | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 37 | 10 36 | syl | ⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 39 | 1 2 3 26 4 5 6 7 8 9 27 32 33 34 35 25 38 29 | evlslem3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐸 ‘ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) ) ) |
| 40 | 0zd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 0 ∈ ℤ ) | |
| 41 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ V ) | |
| 42 | fconstmpt | ⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) | |
| 43 | 42 | a1i | ⊢ ( 𝜑 → ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 44 | 14 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 45 | 10 40 41 43 44 | offval2 | ⊢ ( 𝜑 → ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( 0 ↑ ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 46 | 14 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) |
| 47 | 5 3 | mgpbas | ⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 48 | 5 17 | ringidval | ⊢ ( 1r ‘ 𝑆 ) = ( 0g ‘ 𝑇 ) |
| 49 | 47 48 6 | mulg0 | ⊢ ( ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 → ( 0 ↑ ( 𝐺 ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
| 50 | 46 49 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 0 ↑ ( 𝐺 ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
| 51 | 50 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 0 ↑ ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) |
| 52 | 45 51 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) = ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) |
| 53 | 52 | oveq2d | ⊢ ( 𝜑 → ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) = ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) ) |
| 54 | 5 | crngmgp | ⊢ ( 𝑆 ∈ CRing → 𝑇 ∈ CMnd ) |
| 55 | 12 54 | syl | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
| 56 | 55 | cmnmndd | ⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
| 57 | 48 | gsumz | ⊢ ( ( 𝑇 ∈ Mnd ∧ 𝐼 ∈ 𝑊 ) → ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) = ( 1r ‘ 𝑆 ) ) |
| 58 | 56 10 57 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 Σg ( 𝑥 ∈ 𝐼 ↦ ( 1r ‘ 𝑆 ) ) ) = ( 1r ‘ 𝑆 ) ) |
| 59 | 53 58 | eqtrd | ⊢ ( 𝜑 → ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) = ( 1r ‘ 𝑆 ) ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) = ( 1r ‘ 𝑆 ) ) |
| 61 | 60 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 1r ‘ 𝑆 ) ) ) |
| 62 | 26 3 | rhmf | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 63 | 13 62 | syl | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 64 | 63 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) |
| 65 | 3 7 17 | ringridm | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐶 ) → ( ( 𝐹 ‘ 𝑥 ) · ( 1r ‘ 𝑆 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 66 | 21 64 65 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 1r ‘ 𝑆 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 67 | 61 66 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( 𝑇 Σg ( ( 𝐼 × { 0 } ) ∘f ↑ 𝐺 ) ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 68 | 31 39 67 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 69 | 68 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 70 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 71 | 26 70 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 72 | 19 71 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 73 | 24 69 72 | rspcdva | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) ) |
| 74 | 1 | mplassa | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ AssAlg ) |
| 75 | 10 11 74 | syl2anc | ⊢ ( 𝜑 → 𝑃 ∈ AssAlg ) |
| 76 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 77 | 15 76 | asclrhm | ⊢ ( 𝑃 ∈ AssAlg → 𝐴 ∈ ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 78 | 75 77 | syl | ⊢ ( 𝜑 → 𝐴 ∈ ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 79 | 1 10 11 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 80 | 79 | oveq1d | ⊢ ( 𝜑 → ( 𝑅 RingHom 𝑃 ) = ( ( Scalar ‘ 𝑃 ) RingHom 𝑃 ) ) |
| 81 | 78 80 | eleqtrrd | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝑅 RingHom 𝑃 ) ) |
| 82 | 70 16 | rhm1 | ⊢ ( 𝐴 ∈ ( 𝑅 RingHom 𝑃 ) → ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 83 | 81 82 | syl | ⊢ ( 𝜑 → ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑃 ) ) |
| 84 | 83 | fveq2d | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝐴 ‘ ( 1r ‘ 𝑅 ) ) ) = ( 𝐸 ‘ ( 1r ‘ 𝑃 ) ) ) |
| 85 | 70 17 | rhm1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 86 | 13 85 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 87 | 73 84 86 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 1r ‘ 𝑃 ) ) = ( 1r ‘ 𝑆 ) ) |
| 88 | eqid | ⊢ ( +g ‘ 𝑃 ) = ( +g ‘ 𝑃 ) | |
| 89 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 90 | 20 | ringgrpd | ⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
| 91 | 21 | ringgrpd | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) |
| 92 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 93 | ringcmn | ⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ CMnd ) | |
| 94 | 21 93 | syl | ⊢ ( 𝜑 → 𝑆 ∈ CMnd ) |
| 95 | 94 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑆 ∈ CMnd ) |
| 96 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 97 | 4 96 | rabex2 | ⊢ 𝐷 ∈ V |
| 98 | 97 | a1i | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐷 ∈ V ) |
| 99 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐼 ∈ 𝑊 ) |
| 100 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑅 ∈ CRing ) |
| 101 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑆 ∈ CRing ) |
| 102 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 103 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 104 | simpr | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → 𝑝 ∈ 𝐵 ) | |
| 105 | 1 2 3 4 5 6 7 8 9 99 100 101 102 103 104 | evlslem6 | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) ) |
| 106 | 105 | simpld | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) |
| 107 | 105 | simprd | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 108 | 3 92 95 98 106 107 | gsumcl | ⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝐵 ) → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ 𝐶 ) |
| 109 | 108 9 | fmptd | ⊢ ( 𝜑 → 𝐸 : 𝐵 ⟶ 𝐶 ) |
| 110 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 111 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑥 ∈ 𝐵 ) | |
| 112 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑦 ∈ 𝐵 ) | |
| 113 | 1 2 110 88 111 112 | mpladd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) = ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ) |
| 114 | 113 | fveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) = ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ‘ 𝑏 ) ) |
| 115 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 116 | 1 26 2 4 115 | mplelf | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 117 | 116 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 Fn 𝐷 ) |
| 118 | 117 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑥 Fn 𝐷 ) |
| 119 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 120 | 1 26 2 4 119 | mplelf | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 121 | 120 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 Fn 𝐷 ) |
| 122 | 121 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑦 Fn 𝐷 ) |
| 123 | 97 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝐷 ∈ V ) |
| 124 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) | |
| 125 | fnfvof | ⊢ ( ( ( 𝑥 Fn 𝐷 ∧ 𝑦 Fn 𝐷 ) ∧ ( 𝐷 ∈ V ∧ 𝑏 ∈ 𝐷 ) ) → ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ‘ 𝑏 ) = ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) | |
| 126 | 118 122 123 124 125 | syl22anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑥 ∘f ( +g ‘ 𝑅 ) 𝑦 ) ‘ 𝑏 ) = ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) |
| 127 | 114 126 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) = ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) |
| 128 | 127 | fveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) = ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) ) |
| 129 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 130 | 13 129 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 131 | 130 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 132 | 116 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑥 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 133 | 120 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑦 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) |
| 134 | 26 110 89 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ ( 𝑥 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑏 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) ) |
| 135 | 131 132 133 134 | syl3anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑏 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑏 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) ) |
| 136 | 128 135 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) ) |
| 137 | 136 | oveq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 138 | 21 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ Ring ) |
| 139 | 63 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 140 | 139 132 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ∈ 𝐶 ) |
| 141 | 139 133 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ∈ 𝐶 ) |
| 142 | 55 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝑇 ∈ CMnd ) |
| 143 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 144 | 4 47 6 142 124 143 | psrbagev2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 145 | 3 89 7 | ringdir | ⊢ ( ( 𝑆 ∈ Ring ∧ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ∈ 𝐶 ∧ ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ∈ 𝐶 ∧ ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 146 | 138 140 141 144 145 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ( +g ‘ 𝑆 ) ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 147 | 137 146 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 148 | 147 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 149 | 97 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐷 ∈ V ) |
| 150 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ V ) | |
| 151 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ V ) | |
| 152 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) | |
| 153 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) | |
| 154 | 149 150 151 152 153 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∘f ( +g ‘ 𝑆 ) ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ( +g ‘ 𝑆 ) ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 155 | 148 154 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∘f ( +g ‘ 𝑆 ) ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 156 | 155 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∘f ( +g ‘ 𝑆 ) ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
| 157 | 94 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ CMnd ) |
| 158 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐼 ∈ 𝑊 ) |
| 159 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑅 ∈ CRing ) |
| 160 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑆 ∈ CRing ) |
| 161 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 162 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 163 | 1 2 3 4 5 6 7 8 9 158 159 160 161 162 115 | evlslem6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) ) |
| 164 | 163 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) |
| 165 | 1 2 3 4 5 6 7 8 9 158 159 160 161 162 119 | evlslem6 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ∧ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) ) |
| 166 | 165 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) |
| 167 | 163 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 168 | 165 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) finSupp ( 0g ‘ 𝑆 ) ) |
| 169 | 3 92 89 157 149 164 166 167 168 | gsumadd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ∘f ( +g ‘ 𝑆 ) ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) = ( ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ( +g ‘ 𝑆 ) ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
| 170 | 156 169 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ( +g ‘ 𝑆 ) ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
| 171 | 90 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑃 ∈ Grp ) |
| 172 | 2 88 | grpcl | ⊢ ( ( 𝑃 ∈ Grp ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
| 173 | 171 115 119 172 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 ) |
| 174 | fveq1 | ⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝑝 ‘ 𝑏 ) = ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) | |
| 175 | 174 | fveq2d | ⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) ) |
| 176 | 175 | oveq1d | ⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 177 | 176 | mpteq2dv | ⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 178 | 177 | oveq2d | ⊢ ( 𝑝 = ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 179 | ovex | ⊢ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V | |
| 180 | 178 9 179 | fvmpt | ⊢ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ∈ 𝐵 → ( 𝐸 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 181 | 173 180 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 182 | fveq1 | ⊢ ( 𝑝 = 𝑥 → ( 𝑝 ‘ 𝑏 ) = ( 𝑥 ‘ 𝑏 ) ) | |
| 183 | 182 | fveq2d | ⊢ ( 𝑝 = 𝑥 → ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) ) |
| 184 | 183 | oveq1d | ⊢ ( 𝑝 = 𝑥 → ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 185 | 184 | mpteq2dv | ⊢ ( 𝑝 = 𝑥 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 186 | 185 | oveq2d | ⊢ ( 𝑝 = 𝑥 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 187 | ovex | ⊢ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V | |
| 188 | 186 9 187 | fvmpt | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝐸 ‘ 𝑥 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 189 | 115 188 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑥 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 190 | fveq1 | ⊢ ( 𝑝 = 𝑦 → ( 𝑝 ‘ 𝑏 ) = ( 𝑦 ‘ 𝑏 ) ) | |
| 191 | 190 | fveq2d | ⊢ ( 𝑝 = 𝑦 → ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) ) |
| 192 | 191 | oveq1d | ⊢ ( 𝑝 = 𝑦 → ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 193 | 192 | mpteq2dv | ⊢ ( 𝑝 = 𝑦 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 194 | 193 | oveq2d | ⊢ ( 𝑝 = 𝑦 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 195 | ovex | ⊢ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V | |
| 196 | 194 9 195 | fvmpt | ⊢ ( 𝑦 ∈ 𝐵 → ( 𝐸 ‘ 𝑦 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 197 | 196 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ 𝑦 ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 198 | 189 197 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝐸 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐸 ‘ 𝑦 ) ) = ( ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ( +g ‘ 𝑆 ) ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) ) |
| 199 | 170 181 198 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( +g ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐸 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( 𝐸 ‘ 𝑦 ) ) ) |
| 200 | 2 3 88 89 90 91 109 199 | isghmd | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 GrpHom 𝑆 ) ) |
| 201 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 202 | 201 5 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom 𝑇 ) ) |
| 203 | 13 202 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom 𝑇 ) ) |
| 204 | 203 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom 𝑇 ) ) |
| 205 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑥 ∈ 𝐵 ) | |
| 206 | 1 26 2 4 205 | mplelf | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑥 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 207 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑧 ∈ 𝐷 ) | |
| 208 | 206 207 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑥 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ) |
| 209 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑦 ∈ 𝐵 ) | |
| 210 | 1 26 2 4 209 | mplelf | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑦 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 211 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑤 ∈ 𝐷 ) | |
| 212 | 210 211 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) |
| 213 | 201 26 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 214 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 215 | 201 214 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 216 | 5 7 | mgpplusg | ⊢ · = ( +g ‘ 𝑇 ) |
| 217 | 213 215 216 | mhmlin | ⊢ ( ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom 𝑇 ) ∧ ( 𝑥 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 218 | 204 208 212 217 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) ) |
| 219 | 56 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → 𝑇 ∈ Mnd ) |
| 220 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑧 ∈ 𝐷 ) | |
| 221 | 4 | psrbagf | ⊢ ( 𝑧 ∈ 𝐷 → 𝑧 : 𝐼 ⟶ ℕ0 ) |
| 222 | 220 221 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑧 : 𝐼 ⟶ ℕ0 ) |
| 223 | 222 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑣 ) ∈ ℕ0 ) |
| 224 | 4 | psrbagf | ⊢ ( 𝑤 ∈ 𝐷 → 𝑤 : 𝐼 ⟶ ℕ0 ) |
| 225 | 224 | ad2antll | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑤 : 𝐼 ⟶ ℕ0 ) |
| 226 | 225 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑤 ‘ 𝑣 ) ∈ ℕ0 ) |
| 227 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 228 | 227 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑣 ) ∈ 𝐶 ) |
| 229 | 47 6 216 | mulgnn0dir | ⊢ ( ( 𝑇 ∈ Mnd ∧ ( ( 𝑧 ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝑤 ‘ 𝑣 ) ∈ ℕ0 ∧ ( 𝐺 ‘ 𝑣 ) ∈ 𝐶 ) ) → ( ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ↑ ( 𝐺 ‘ 𝑣 ) ) = ( ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) · ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 230 | 219 223 226 228 229 | syl13anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ↑ ( 𝐺 ‘ 𝑣 ) ) = ( ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) · ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 231 | 230 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) · ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) ) |
| 232 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝐼 ∈ 𝑊 ) |
| 233 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ∈ V ) | |
| 234 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑣 ) ∈ V ) | |
| 235 | 222 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑧 Fn 𝐼 ) |
| 236 | 225 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑤 Fn 𝐼 ) |
| 237 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 238 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑧 ‘ 𝑣 ) = ( 𝑧 ‘ 𝑣 ) ) | |
| 239 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝑤 ‘ 𝑣 ) = ( 𝑤 ‘ 𝑣 ) ) | |
| 240 | 235 236 232 232 237 238 239 | offval | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑧 ∘f + 𝑤 ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ) ) |
| 241 | 14 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑣 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑣 ) ) ) |
| 242 | 241 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝐺 = ( 𝑣 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑣 ) ) ) |
| 243 | 232 233 234 240 242 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) = ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑧 ‘ 𝑣 ) + ( 𝑤 ‘ 𝑣 ) ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 244 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ∈ V ) | |
| 245 | ovexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ∈ V ) | |
| 246 | 14 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐼 ) |
| 247 | 246 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝐺 Fn 𝐼 ) |
| 248 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ∧ 𝑣 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑣 ) = ( 𝐺 ‘ 𝑣 ) ) | |
| 249 | 235 247 232 232 237 238 248 | offval | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑧 ∘f ↑ 𝐺 ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 250 | 236 247 232 232 237 239 248 | offval | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑤 ∘f ↑ 𝐺 ) = ( 𝑣 ∈ 𝐼 ↦ ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) |
| 251 | 232 244 245 249 250 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑧 ∘f ↑ 𝐺 ) ∘f · ( 𝑤 ∘f ↑ 𝐺 ) ) = ( 𝑣 ∈ 𝐼 ↦ ( ( ( 𝑧 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) · ( ( 𝑤 ‘ 𝑣 ) ↑ ( 𝐺 ‘ 𝑣 ) ) ) ) ) |
| 252 | 231 243 251 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) = ( ( 𝑧 ∘f ↑ 𝐺 ) ∘f · ( 𝑤 ∘f ↑ 𝐺 ) ) ) |
| 253 | 252 | oveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) = ( 𝑇 Σg ( ( 𝑧 ∘f ↑ 𝐺 ) ∘f · ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 254 | 55 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑇 ∈ CMnd ) |
| 255 | 4 47 6 48 254 220 227 | psrbagev1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑧 ∘f ↑ 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝑧 ∘f ↑ 𝐺 ) finSupp ( 1r ‘ 𝑆 ) ) ) |
| 256 | 255 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑧 ∘f ↑ 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
| 257 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → 𝑤 ∈ 𝐷 ) | |
| 258 | 4 47 6 48 254 257 227 | psrbagev1 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑤 ∘f ↑ 𝐺 ) : 𝐼 ⟶ 𝐶 ∧ ( 𝑤 ∘f ↑ 𝐺 ) finSupp ( 1r ‘ 𝑆 ) ) ) |
| 259 | 258 | simpld | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑤 ∘f ↑ 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
| 260 | 255 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑧 ∘f ↑ 𝐺 ) finSupp ( 1r ‘ 𝑆 ) ) |
| 261 | 258 | simprd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑤 ∘f ↑ 𝐺 ) finSupp ( 1r ‘ 𝑆 ) ) |
| 262 | 47 48 216 254 232 256 259 260 261 | gsumadd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( ( 𝑧 ∘f ↑ 𝐺 ) ∘f · ( 𝑤 ∘f ↑ 𝐺 ) ) ) = ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 263 | 253 262 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) = ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 264 | 263 | adantrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) = ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 265 | 218 264 | oveq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) · ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) · ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 266 | 55 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑇 ∈ CMnd ) |
| 267 | 63 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ 𝐶 ) |
| 268 | 267 208 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐶 ) |
| 269 | 267 212 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ∈ 𝐶 ) |
| 270 | 4 47 6 254 220 227 | psrbagev2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 271 | 270 | adantrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 272 | 4 47 6 254 257 227 | psrbagev2 | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 273 | 272 | adantrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 274 | 47 216 | cmn4 | ⊢ ( ( 𝑇 ∈ CMnd ∧ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) ∈ 𝐶 ∧ ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ∈ 𝐶 ) ∧ ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ∧ ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) ) → ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) · ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) · ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 275 | 266 268 269 271 273 274 | syl122anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) ) · ( ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) · ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 276 | 265 275 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) · ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) · ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 277 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐼 ∈ 𝑊 ) |
| 278 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑅 ∈ CRing ) |
| 279 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑆 ∈ CRing ) |
| 280 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 281 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 282 | 4 | psrbagaddcl | ⊢ ( ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) → ( 𝑧 ∘f + 𝑤 ) ∈ 𝐷 ) |
| 283 | 282 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝑧 ∘f + 𝑤 ) ∈ 𝐷 ) |
| 284 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → 𝑅 ∈ Ring ) |
| 285 | 26 214 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑥 ‘ 𝑧 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑦 ‘ 𝑤 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 286 | 284 208 212 285 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 287 | 1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 283 286 | evlslem3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = ( 𝑧 ∘f + 𝑤 ) , ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) · ( 𝑇 Σg ( ( 𝑧 ∘f + 𝑤 ) ∘f ↑ 𝐺 ) ) ) ) |
| 288 | 1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 207 208 | evlslem3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑧 , ( 𝑥 ‘ 𝑧 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) ) |
| 289 | 1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 211 212 | evlslem3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑤 , ( 𝑦 ‘ 𝑤 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) |
| 290 | 288 289 | oveq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑧 , ( 𝑥 ‘ 𝑧 ) , ( 0g ‘ 𝑅 ) ) ) ) · ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑤 , ( 𝑦 ‘ 𝑤 ) , ( 0g ‘ 𝑅 ) ) ) ) ) = ( ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑧 ) ) · ( 𝑇 Σg ( 𝑧 ∘f ↑ 𝐺 ) ) ) · ( ( 𝐹 ‘ ( 𝑦 ‘ 𝑤 ) ) · ( 𝑇 Σg ( 𝑤 ∘f ↑ 𝐺 ) ) ) ) ) |
| 291 | 276 287 290 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐷 ∧ 𝑤 ∈ 𝐷 ) ) ) → ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = ( 𝑧 ∘f + 𝑤 ) , ( ( 𝑥 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑧 , ( 𝑥 ‘ 𝑧 ) , ( 0g ‘ 𝑅 ) ) ) ) · ( 𝐸 ‘ ( 𝑣 ∈ 𝐷 ↦ if ( 𝑣 = 𝑤 , ( 𝑦 ‘ 𝑤 ) , ( 0g ‘ 𝑅 ) ) ) ) ) ) |
| 292 | 1 2 7 25 4 10 11 12 200 291 | evlslem2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝐸 ‘ ( 𝑥 ( .r ‘ 𝑃 ) 𝑦 ) ) = ( ( 𝐸 ‘ 𝑥 ) · ( 𝐸 ‘ 𝑦 ) ) ) |
| 293 | 2 16 17 18 7 20 21 87 292 3 88 89 109 199 | isrhmd | ⊢ ( 𝜑 → 𝐸 ∈ ( 𝑃 RingHom 𝑆 ) ) |
| 294 | ovex | ⊢ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V | |
| 295 | 294 9 | fnmpti | ⊢ 𝐸 Fn 𝐵 |
| 296 | 295 | a1i | ⊢ ( 𝜑 → 𝐸 Fn 𝐵 ) |
| 297 | 26 2 | rhmf | ⊢ ( 𝐴 ∈ ( 𝑅 RingHom 𝑃 ) → 𝐴 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
| 298 | 81 297 | syl | ⊢ ( 𝜑 → 𝐴 : ( Base ‘ 𝑅 ) ⟶ 𝐵 ) |
| 299 | 298 | ffnd | ⊢ ( 𝜑 → 𝐴 Fn ( Base ‘ 𝑅 ) ) |
| 300 | 298 | frnd | ⊢ ( 𝜑 → ran 𝐴 ⊆ 𝐵 ) |
| 301 | fnco | ⊢ ( ( 𝐸 Fn 𝐵 ∧ 𝐴 Fn ( Base ‘ 𝑅 ) ∧ ran 𝐴 ⊆ 𝐵 ) → ( 𝐸 ∘ 𝐴 ) Fn ( Base ‘ 𝑅 ) ) | |
| 302 | 296 299 300 301 | syl3anc | ⊢ ( 𝜑 → ( 𝐸 ∘ 𝐴 ) Fn ( Base ‘ 𝑅 ) ) |
| 303 | 63 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ( Base ‘ 𝑅 ) ) |
| 304 | fvco2 | ⊢ ( ( 𝐴 Fn ( Base ‘ 𝑅 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐸 ∘ 𝐴 ) ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) ) | |
| 305 | 299 304 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐸 ∘ 𝐴 ) ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝐴 ‘ 𝑥 ) ) ) |
| 306 | 305 68 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐸 ∘ 𝐴 ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 307 | 302 303 306 | eqfnfvd | ⊢ ( 𝜑 → ( 𝐸 ∘ 𝐴 ) = 𝐹 ) |
| 308 | 1 8 2 10 19 | mvrf2 | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
| 309 | 308 | ffnd | ⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
| 310 | 308 | frnd | ⊢ ( 𝜑 → ran 𝑉 ⊆ 𝐵 ) |
| 311 | fnco | ⊢ ( ( 𝐸 Fn 𝐵 ∧ 𝑉 Fn 𝐼 ∧ ran 𝑉 ⊆ 𝐵 ) → ( 𝐸 ∘ 𝑉 ) Fn 𝐼 ) | |
| 312 | 296 309 310 311 | syl3anc | ⊢ ( 𝜑 → ( 𝐸 ∘ 𝑉 ) Fn 𝐼 ) |
| 313 | fvco2 | ⊢ ( ( 𝑉 Fn 𝐼 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ∘ 𝑉 ) ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) ) | |
| 314 | 309 313 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ∘ 𝑉 ) ‘ 𝑥 ) = ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) ) |
| 315 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 316 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ CRing ) |
| 317 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 318 | 8 4 25 70 315 316 317 | mvrval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 319 | 318 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) = ( 𝐸 ‘ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) ) |
| 320 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑆 ∈ CRing ) |
| 321 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
| 322 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 323 | 4 | psrbagsn | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ 𝐷 ) |
| 324 | 10 323 | syl | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ 𝐷 ) |
| 325 | 324 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∈ 𝐷 ) |
| 326 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 327 | 1 2 3 26 4 5 6 7 8 9 315 316 320 321 322 25 325 326 | evlslem3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 ‘ ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) = ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) · ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) ) ) |
| 328 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) = ( 1r ‘ 𝑆 ) ) |
| 329 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 330 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 331 | 329 330 | ifcli | ⊢ if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 |
| 332 | 331 | a1i | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → if ( 𝑧 = 𝑥 , 1 , 0 ) ∈ ℕ0 ) |
| 333 | 14 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) |
| 334 | eqidd | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ) | |
| 335 | 14 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 336 | 10 332 333 334 335 | offval2 | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) = ( 𝑧 ∈ 𝐼 ↦ ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 337 | oveq1 | ⊢ ( 1 = if ( 𝑧 = 𝑥 , 1 , 0 ) → ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) ) | |
| 338 | 337 | eqeq1d | ⊢ ( 1 = if ( 𝑧 = 𝑥 , 1 , 0 ) → ( ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ↔ ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 339 | oveq1 | ⊢ ( 0 = if ( 𝑧 = 𝑥 , 1 , 0 ) → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) ) | |
| 340 | 339 | eqeq1d | ⊢ ( 0 = if ( 𝑧 = 𝑥 , 1 , 0 ) → ( ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ↔ ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 341 | 333 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑧 = 𝑥 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) |
| 342 | 47 6 | mulg1 | ⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 → ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 343 | 341 342 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑧 = 𝑥 ) → ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 344 | iftrue | ⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 345 | 344 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑧 = 𝑥 ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 346 | 343 345 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑧 = 𝑥 ) → ( 1 ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) |
| 347 | 47 48 6 | mulg0 | ⊢ ( ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 1r ‘ 𝑆 ) ) |
| 348 | 333 347 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 1r ‘ 𝑆 ) ) |
| 349 | 348 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ ¬ 𝑧 = 𝑥 ) → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = ( 1r ‘ 𝑆 ) ) |
| 350 | iffalse | ⊢ ( ¬ 𝑧 = 𝑥 → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) | |
| 351 | 350 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ ¬ 𝑧 = 𝑥 ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 352 | 349 351 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) ∧ ¬ 𝑧 = 𝑥 ) → ( 0 ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) |
| 353 | 338 340 346 352 | ifbothda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) = if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) |
| 354 | 353 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑧 ∈ 𝐼 ↦ ( if ( 𝑧 = 𝑥 , 1 , 0 ) ↑ ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 355 | 336 354 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 356 | 355 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) |
| 357 | 356 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) = ( 𝑇 Σg ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) ) |
| 358 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑇 ∈ Mnd ) |
| 359 | 333 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑧 ) ∈ 𝐶 ) |
| 360 | 3 17 | ringidcl | ⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ 𝐶 ) |
| 361 | 21 360 | syl | ⊢ ( 𝜑 → ( 1r ‘ 𝑆 ) ∈ 𝐶 ) |
| 362 | 361 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → ( 1r ‘ 𝑆 ) ∈ 𝐶 ) |
| 363 | 359 362 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ∈ 𝐶 ) |
| 364 | 363 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) : 𝐼 ⟶ 𝐶 ) |
| 365 | eldifsnneq | ⊢ ( 𝑧 ∈ ( 𝐼 ∖ { 𝑥 } ) → ¬ 𝑧 = 𝑥 ) | |
| 366 | 365 350 | syl | ⊢ ( 𝑧 ∈ ( 𝐼 ∖ { 𝑥 } ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 367 | 366 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) ∧ 𝑧 ∈ ( 𝐼 ∖ { 𝑥 } ) ) → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 1r ‘ 𝑆 ) ) |
| 368 | 367 315 | suppss2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) supp ( 1r ‘ 𝑆 ) ) ⊆ { 𝑥 } ) |
| 369 | 47 48 358 315 317 364 368 | gsumpt | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ) = ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ‘ 𝑥 ) ) |
| 370 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 371 | 344 370 | eqtrd | ⊢ ( 𝑧 = 𝑥 → if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 372 | eqid | ⊢ ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) | |
| 373 | fvex | ⊢ ( 𝐺 ‘ 𝑥 ) ∈ V | |
| 374 | 371 372 373 | fvmpt | ⊢ ( 𝑥 ∈ 𝐼 → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 375 | 374 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , ( 𝐺 ‘ 𝑧 ) , ( 1r ‘ 𝑆 ) ) ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 376 | 357 369 375 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 377 | 328 376 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) · ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) ) = ( ( 1r ‘ 𝑆 ) · ( 𝐺 ‘ 𝑥 ) ) ) |
| 378 | 3 7 17 | ringlidm | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐺 ‘ 𝑥 ) ∈ 𝐶 ) → ( ( 1r ‘ 𝑆 ) · ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 379 | 21 46 378 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 1r ‘ 𝑆 ) · ( 𝐺 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 380 | 377 379 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ ( 1r ‘ 𝑅 ) ) · ( 𝑇 Σg ( ( 𝑧 ∈ 𝐼 ↦ if ( 𝑧 = 𝑥 , 1 , 0 ) ) ∘f ↑ 𝐺 ) ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 381 | 319 327 380 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐸 ‘ ( 𝑉 ‘ 𝑥 ) ) = ( 𝐺 ‘ 𝑥 ) ) |
| 382 | 314 381 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐸 ∘ 𝑉 ) ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 383 | 312 246 382 | eqfnfvd | ⊢ ( 𝜑 → ( 𝐸 ∘ 𝑉 ) = 𝐺 ) |
| 384 | 293 307 383 | 3jca | ⊢ ( 𝜑 → ( 𝐸 ∈ ( 𝑃 RingHom 𝑆 ) ∧ ( 𝐸 ∘ 𝐴 ) = 𝐹 ∧ ( 𝐸 ∘ 𝑉 ) = 𝐺 ) ) |