This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power series/polynomial variable function maps indices to polynomials. (Contributed by Stefan O'Rear, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mvrf2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mvrf2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| mvrf2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mvrf2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mvrf2.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| Assertion | mvrf2 | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrf2.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mvrf2.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 3 | mvrf2.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 4 | mvrf2.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 5 | mvrf2.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 8 | 6 2 7 4 5 | mvrf | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 9 | 8 | ffnd | ⊢ ( 𝜑 → 𝑉 Fn 𝐼 ) |
| 10 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 11 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑅 ∈ Ring ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 13 | 1 2 3 10 11 12 | mvrcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
| 14 | 13 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) |
| 15 | ffnfv | ⊢ ( 𝑉 : 𝐼 ⟶ 𝐵 ↔ ( 𝑉 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝑉 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 16 | 9 14 15 | sylanbrc | ⊢ ( 𝜑 → 𝑉 : 𝐼 ⟶ 𝐵 ) |