This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two finite bags is a finite bag. (Contributed by Mario Carneiro, 9-Jan-2015) Shorten proof and remove a sethood antecedent. (Revised by SN, 7-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | psrbagaddcl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( 𝐹 ∘f + 𝐺 ) ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | nn0addcl | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝑥 + 𝑦 ) ∈ ℕ0 ) |
| 4 | 1 | psrbagf | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 6 | 1 | psrbagf | ⊢ ( 𝐺 ∈ 𝐷 → 𝐺 : 𝐼 ⟶ ℕ0 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → 𝐺 : 𝐼 ⟶ ℕ0 ) |
| 8 | simpl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → 𝐹 ∈ 𝐷 ) | |
| 9 | 5 | ffnd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → 𝐹 Fn 𝐼 ) |
| 10 | 8 9 | fndmexd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → 𝐼 ∈ V ) |
| 11 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 12 | 3 5 7 10 10 11 | off | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( 𝐹 ∘f + 𝐺 ) : 𝐼 ⟶ ℕ0 ) |
| 13 | ovex | ⊢ ( 𝐹 ∘f + 𝐺 ) ∈ V | |
| 14 | fcdmnn0suppg | ⊢ ( ( ( 𝐹 ∘f + 𝐺 ) ∈ V ∧ ( 𝐹 ∘f + 𝐺 ) : 𝐼 ⟶ ℕ0 ) → ( ( 𝐹 ∘f + 𝐺 ) supp 0 ) = ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ℕ ) ) | |
| 15 | 13 12 14 | sylancr | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( ( 𝐹 ∘f + 𝐺 ) supp 0 ) = ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ℕ ) ) |
| 16 | 1 | psrbagfsupp | ⊢ ( 𝐹 ∈ 𝐷 → 𝐹 finSupp 0 ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → 𝐹 finSupp 0 ) |
| 18 | 1 | psrbagfsupp | ⊢ ( 𝐺 ∈ 𝐷 → 𝐺 finSupp 0 ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → 𝐺 finSupp 0 ) |
| 20 | 17 19 | fsuppunfi | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ∈ Fin ) |
| 21 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 22 | 21 | a1i | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → 0 ∈ ℕ0 ) |
| 23 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 24 | 23 | a1i | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( 0 + 0 ) = 0 ) |
| 25 | 10 22 5 7 24 | suppofssd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( ( 𝐹 ∘f + 𝐺 ) supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐺 supp 0 ) ) ) |
| 26 | 20 25 | ssfid | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( ( 𝐹 ∘f + 𝐺 ) supp 0 ) ∈ Fin ) |
| 27 | 15 26 | eqeltrrd | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ℕ ) ∈ Fin ) |
| 28 | 1 | psrbag | ⊢ ( 𝐼 ∈ V → ( ( 𝐹 ∘f + 𝐺 ) ∈ 𝐷 ↔ ( ( 𝐹 ∘f + 𝐺 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ℕ ) ∈ Fin ) ) ) |
| 29 | 10 28 | syl | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( ( 𝐹 ∘f + 𝐺 ) ∈ 𝐷 ↔ ( ( 𝐹 ∘f + 𝐺 ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ℕ ) ∈ Fin ) ) ) |
| 30 | 12 27 29 | mpbir2and | ⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝐺 ∈ 𝐷 ) → ( 𝐹 ∘f + 𝐺 ) ∈ 𝐷 ) |