This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isghmd.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| isghmd.y | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | ||
| isghmd.a | ⊢ + = ( +g ‘ 𝑆 ) | ||
| isghmd.b | ⊢ ⨣ = ( +g ‘ 𝑇 ) | ||
| isghmd.s | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) | ||
| isghmd.t | ⊢ ( 𝜑 → 𝑇 ∈ Grp ) | ||
| isghmd.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) | ||
| isghmd.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | ||
| Assertion | isghmd | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isghmd.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| 2 | isghmd.y | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | |
| 3 | isghmd.a | ⊢ + = ( +g ‘ 𝑆 ) | |
| 4 | isghmd.b | ⊢ ⨣ = ( +g ‘ 𝑇 ) | |
| 5 | isghmd.s | ⊢ ( 𝜑 → 𝑆 ∈ Grp ) | |
| 6 | isghmd.t | ⊢ ( 𝜑 → 𝑇 ∈ Grp ) | |
| 7 | isghmd.f | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) | |
| 8 | isghmd.l | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 9 | 8 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) |
| 10 | 7 9 | jca | ⊢ ( 𝜑 → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 11 | 1 2 3 4 | isghm | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( 𝑥 + 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) ⨣ ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 12 | 5 6 10 11 | syl21anbrc | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |