This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an operation applied to two functions. (Contributed by Mario Carneiro, 20-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | offval.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| offval.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | ||
| offval.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| offval.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| offval.5 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 | ||
| offval.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) | ||
| offval.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = 𝐷 ) | ||
| Assertion | offval | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝐶 𝑅 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | offval.1 | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) | |
| 2 | offval.2 | ⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) | |
| 3 | offval.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 4 | offval.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 5 | offval.5 | ⊢ ( 𝐴 ∩ 𝐵 ) = 𝑆 | |
| 6 | offval.6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) | |
| 7 | offval.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑥 ) = 𝐷 ) | |
| 8 | fnex | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ V ) | |
| 9 | 1 3 8 | syl2anc | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 10 | fnex | ⊢ ( ( 𝐺 Fn 𝐵 ∧ 𝐵 ∈ 𝑊 ) → 𝐺 ∈ V ) | |
| 11 | 2 4 10 | syl2anc | ⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 12 | 1 | fndmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 13 | 2 | fndmd | ⊢ ( 𝜑 → dom 𝐺 = 𝐵 ) |
| 14 | 12 13 | ineq12d | ⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = ( 𝐴 ∩ 𝐵 ) ) |
| 15 | 14 5 | eqtrdi | ⊢ ( 𝜑 → ( dom 𝐹 ∩ dom 𝐺 ) = 𝑆 ) |
| 16 | 15 | mpteq1d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 17 | inex1g | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) ∈ V ) | |
| 18 | 5 17 | eqeltrrid | ⊢ ( 𝐴 ∈ 𝑉 → 𝑆 ∈ V ) |
| 19 | mptexg | ⊢ ( 𝑆 ∈ V → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) | |
| 20 | 3 18 19 | 3syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
| 21 | 16 20 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) |
| 22 | dmeq | ⊢ ( 𝑓 = 𝐹 → dom 𝑓 = dom 𝐹 ) | |
| 23 | dmeq | ⊢ ( 𝑔 = 𝐺 → dom 𝑔 = dom 𝐺 ) | |
| 24 | 22 23 | ineqan12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( dom 𝑓 ∩ dom 𝑔 ) = ( dom 𝐹 ∩ dom 𝐺 ) ) |
| 25 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 26 | fveq1 | ⊢ ( 𝑔 = 𝐺 → ( 𝑔 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 27 | 25 26 | oveqan12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 28 | 24 27 | mpteq12dv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 29 | df-of | ⊢ ∘f 𝑅 = ( 𝑓 ∈ V , 𝑔 ∈ V ↦ ( 𝑥 ∈ ( dom 𝑓 ∩ dom 𝑔 ) ↦ ( ( 𝑓 ‘ 𝑥 ) 𝑅 ( 𝑔 ‘ 𝑥 ) ) ) ) | |
| 30 | 28 29 | ovmpoga | ⊢ ( ( 𝐹 ∈ V ∧ 𝐺 ∈ V ∧ ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ∈ V ) → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 31 | 9 11 21 30 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ ( dom 𝐹 ∩ dom 𝐺 ) ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 32 | 5 | eleq2i | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ 𝑥 ∈ 𝑆 ) |
| 33 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 34 | 32 33 | bitr3i | ⊢ ( 𝑥 ∈ 𝑆 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) |
| 35 | 6 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐹 ‘ 𝑥 ) = 𝐶 ) |
| 36 | 7 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( 𝐺 ‘ 𝑥 ) = 𝐷 ) |
| 37 | 35 36 | oveq12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) = ( 𝐶 𝑅 𝐷 ) ) |
| 38 | 34 37 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) = ( 𝐶 𝑅 𝐷 ) ) |
| 39 | 38 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝐶 𝑅 𝐷 ) ) ) |
| 40 | 31 16 39 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝐶 𝑅 𝐷 ) ) ) |