This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evlseu . Polynomial evaluation of a scaled monomial. (Contributed by Stefan O'Rear, 8-Mar-2015) (Revised by AV, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlslem3.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| evlslem3.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| evlslem3.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| evlslem3.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| evlslem3.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | ||
| evlslem3.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑆 ) | ||
| evlslem3.x | ⊢ ↑ = ( .g ‘ 𝑇 ) | ||
| evlslem3.m | ⊢ · = ( .r ‘ 𝑆 ) | ||
| evlslem3.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | ||
| evlslem3.e | ⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) | ||
| evlslem3.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| evlslem3.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | ||
| evlslem3.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | ||
| evlslem3.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | ||
| evlslem3.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | ||
| evlslem3.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| evlslem3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | ||
| evlslem3.q | ⊢ ( 𝜑 → 𝐻 ∈ 𝐾 ) | ||
| Assertion | evlslem3 | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ) = ( ( 𝐹 ‘ 𝐻 ) · ( 𝑇 Σg ( 𝐴 ∘f ↑ 𝐺 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem3.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | evlslem3.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | evlslem3.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 4 | evlslem3.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 5 | evlslem3.d | ⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } | |
| 6 | evlslem3.t | ⊢ 𝑇 = ( mulGrp ‘ 𝑆 ) | |
| 7 | evlslem3.x | ⊢ ↑ = ( .g ‘ 𝑇 ) | |
| 8 | evlslem3.m | ⊢ · = ( .r ‘ 𝑆 ) | |
| 9 | evlslem3.v | ⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) | |
| 10 | evlslem3.e | ⊢ 𝐸 = ( 𝑝 ∈ 𝐵 ↦ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) | |
| 11 | evlslem3.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 12 | evlslem3.r | ⊢ ( 𝜑 → 𝑅 ∈ CRing ) | |
| 13 | evlslem3.s | ⊢ ( 𝜑 → 𝑆 ∈ CRing ) | |
| 14 | evlslem3.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 15 | evlslem3.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐶 ) | |
| 16 | evlslem3.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 17 | evlslem3.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) | |
| 18 | evlslem3.q | ⊢ ( 𝜑 → 𝐻 ∈ 𝐾 ) | |
| 19 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 20 | 12 19 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 21 | 1 5 16 4 11 20 2 18 17 | mplmon2cl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ∈ 𝐵 ) |
| 22 | fveq1 | ⊢ ( 𝑝 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) → ( 𝑝 ‘ 𝑏 ) = ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑝 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) → ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) = ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) ) |
| 24 | 23 | oveq1d | ⊢ ( 𝑝 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) → ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 25 | 24 | mpteq2dv | ⊢ ( 𝑝 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 26 | 25 | oveq2d | ⊢ ( 𝑝 = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( 𝑝 ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 27 | ovex | ⊢ ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ∈ V | |
| 28 | 26 10 27 | fvmpt | ⊢ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ∈ 𝐵 → ( 𝐸 ‘ ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 29 | 21 28 | syl | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 30 | eqid | ⊢ ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) = ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) | |
| 31 | eqeq1 | ⊢ ( 𝑥 = 𝑏 → ( 𝑥 = 𝐴 ↔ 𝑏 = 𝐴 ) ) | |
| 32 | 31 | ifbid | ⊢ ( 𝑥 = 𝑏 → if ( 𝑥 = 𝐴 , 𝐻 , 0 ) = if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) |
| 33 | simpr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 ∈ 𝐷 ) | |
| 34 | 16 | fvexi | ⊢ 0 ∈ V |
| 35 | 34 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 36 | 18 35 | ifexd | ⊢ ( 𝜑 → if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ∈ V ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ∈ V ) |
| 38 | 30 32 33 37 | fvmptd3 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) = if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) |
| 39 | 38 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) = ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) ) |
| 40 | 39 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 41 | 40 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) |
| 42 | 41 | oveq2d | ⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) ) |
| 43 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 44 | crngring | ⊢ ( 𝑆 ∈ CRing → 𝑆 ∈ Ring ) | |
| 45 | 13 44 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 46 | ringmnd | ⊢ ( 𝑆 ∈ Ring → 𝑆 ∈ Mnd ) | |
| 47 | 45 46 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Mnd ) |
| 48 | ovex | ⊢ ( ℕ0 ↑m 𝐼 ) ∈ V | |
| 49 | 5 48 | rabex2 | ⊢ 𝐷 ∈ V |
| 50 | 49 | a1i | ⊢ ( 𝜑 → 𝐷 ∈ V ) |
| 51 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑆 ∈ Ring ) |
| 52 | 4 3 | rhmf | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : 𝐾 ⟶ 𝐶 ) |
| 53 | 14 52 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐾 ⟶ 𝐶 ) |
| 54 | 4 16 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 55 | 20 54 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
| 56 | 18 55 | ifcld | ⊢ ( 𝜑 → if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ∈ 𝐾 ) |
| 57 | 53 56 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) ∈ 𝐶 ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) ∈ 𝐶 ) |
| 59 | 6 3 | mgpbas | ⊢ 𝐶 = ( Base ‘ 𝑇 ) |
| 60 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 61 | 6 | crngmgp | ⊢ ( 𝑆 ∈ CRing → 𝑇 ∈ CMnd ) |
| 62 | 13 61 | syl | ⊢ ( 𝜑 → 𝑇 ∈ CMnd ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑇 ∈ CMnd ) |
| 64 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐼 ∈ 𝑊 ) |
| 65 | cmnmnd | ⊢ ( 𝑇 ∈ CMnd → 𝑇 ∈ Mnd ) | |
| 66 | 62 65 | syl | ⊢ ( 𝜑 → 𝑇 ∈ Mnd ) |
| 67 | 66 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑇 ∈ Mnd ) |
| 68 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑦 ∈ ℕ0 ) | |
| 69 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) ) → 𝑧 ∈ 𝐶 ) | |
| 70 | 59 7 67 68 69 | mulgnn0cld | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ ( 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ 𝐶 ) ) → ( 𝑦 ↑ 𝑧 ) ∈ 𝐶 ) |
| 71 | 5 | psrbagf | ⊢ ( 𝑏 ∈ 𝐷 → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 72 | 71 | adantl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 : 𝐼 ⟶ ℕ0 ) |
| 73 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝐺 : 𝐼 ⟶ 𝐶 ) |
| 74 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 75 | 70 72 73 64 64 74 | off | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 ∘f ↑ 𝐺 ) : 𝐼 ⟶ 𝐶 ) |
| 76 | ovex | ⊢ ( 𝑏 ∘f ↑ 𝐺 ) ∈ V | |
| 77 | 76 | a1i | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 ∘f ↑ 𝐺 ) ∈ V ) |
| 78 | 75 | ffund | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → Fun ( 𝑏 ∘f ↑ 𝐺 ) ) |
| 79 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 0g ‘ 𝑇 ) ∈ V ) | |
| 80 | 5 | psrbag | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝑏 ∈ 𝐷 ↔ ( 𝑏 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑏 “ ℕ ) ∈ Fin ) ) ) |
| 81 | 11 80 | syl | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↔ ( 𝑏 : 𝐼 ⟶ ℕ0 ∧ ( ◡ 𝑏 “ ℕ ) ∈ Fin ) ) ) |
| 82 | 81 | simplbda | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ◡ 𝑏 “ ℕ ) ∈ Fin ) |
| 83 | 72 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → 𝑏 Fn 𝐼 ) |
| 84 | 83 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → 𝑏 Fn 𝐼 ) |
| 85 | 15 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐼 ) |
| 86 | 85 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → 𝐺 Fn 𝐼 ) |
| 87 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → 𝐼 ∈ 𝑊 ) |
| 88 | eldifi | ⊢ ( 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) → 𝑦 ∈ 𝐼 ) | |
| 89 | 88 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → 𝑦 ∈ 𝐼 ) |
| 90 | fnfvof | ⊢ ( ( ( 𝑏 Fn 𝐼 ∧ 𝐺 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑊 ∧ 𝑦 ∈ 𝐼 ) ) → ( ( 𝑏 ∘f ↑ 𝐺 ) ‘ 𝑦 ) = ( ( 𝑏 ‘ 𝑦 ) ↑ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 91 | 84 86 87 89 90 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ( ( 𝑏 ∘f ↑ 𝐺 ) ‘ 𝑦 ) = ( ( 𝑏 ‘ 𝑦 ) ↑ ( 𝐺 ‘ 𝑦 ) ) ) |
| 92 | ffvelcdm | ⊢ ( ( 𝑏 : 𝐼 ⟶ ℕ0 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑏 ‘ 𝑦 ) ∈ ℕ0 ) | |
| 93 | 72 88 92 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ( 𝑏 ‘ 𝑦 ) ∈ ℕ0 ) |
| 94 | elnn0 | ⊢ ( ( 𝑏 ‘ 𝑦 ) ∈ ℕ0 ↔ ( ( 𝑏 ‘ 𝑦 ) ∈ ℕ ∨ ( 𝑏 ‘ 𝑦 ) = 0 ) ) | |
| 95 | 93 94 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ( ( 𝑏 ‘ 𝑦 ) ∈ ℕ ∨ ( 𝑏 ‘ 𝑦 ) = 0 ) ) |
| 96 | eldifn | ⊢ ( 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) → ¬ 𝑦 ∈ ( ◡ 𝑏 “ ℕ ) ) | |
| 97 | 96 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ¬ 𝑦 ∈ ( ◡ 𝑏 “ ℕ ) ) |
| 98 | 83 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ℕ ) → 𝑏 Fn 𝐼 ) |
| 99 | 88 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ℕ ) → 𝑦 ∈ 𝐼 ) |
| 100 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ℕ ) → ( 𝑏 ‘ 𝑦 ) ∈ ℕ ) | |
| 101 | 98 99 100 | elpreimad | ⊢ ( ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) ∧ ( 𝑏 ‘ 𝑦 ) ∈ ℕ ) → 𝑦 ∈ ( ◡ 𝑏 “ ℕ ) ) |
| 102 | 97 101 | mtand | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ¬ ( 𝑏 ‘ 𝑦 ) ∈ ℕ ) |
| 103 | 95 102 | orcnd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ( 𝑏 ‘ 𝑦 ) = 0 ) |
| 104 | 103 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ( ( 𝑏 ‘ 𝑦 ) ↑ ( 𝐺 ‘ 𝑦 ) ) = ( 0 ↑ ( 𝐺 ‘ 𝑦 ) ) ) |
| 105 | ffvelcdm | ⊢ ( ( 𝐺 : 𝐼 ⟶ 𝐶 ∧ 𝑦 ∈ 𝐼 ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐶 ) | |
| 106 | 73 88 105 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ 𝐶 ) |
| 107 | 59 60 7 | mulg0 | ⊢ ( ( 𝐺 ‘ 𝑦 ) ∈ 𝐶 → ( 0 ↑ ( 𝐺 ‘ 𝑦 ) ) = ( 0g ‘ 𝑇 ) ) |
| 108 | 106 107 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ( 0 ↑ ( 𝐺 ‘ 𝑦 ) ) = ( 0g ‘ 𝑇 ) ) |
| 109 | 91 104 108 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) ∧ 𝑦 ∈ ( 𝐼 ∖ ( ◡ 𝑏 “ ℕ ) ) ) → ( ( 𝑏 ∘f ↑ 𝐺 ) ‘ 𝑦 ) = ( 0g ‘ 𝑇 ) ) |
| 110 | 75 109 | suppss | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝑏 ∘f ↑ 𝐺 ) supp ( 0g ‘ 𝑇 ) ) ⊆ ( ◡ 𝑏 “ ℕ ) ) |
| 111 | suppssfifsupp | ⊢ ( ( ( ( 𝑏 ∘f ↑ 𝐺 ) ∈ V ∧ Fun ( 𝑏 ∘f ↑ 𝐺 ) ∧ ( 0g ‘ 𝑇 ) ∈ V ) ∧ ( ( ◡ 𝑏 “ ℕ ) ∈ Fin ∧ ( ( 𝑏 ∘f ↑ 𝐺 ) supp ( 0g ‘ 𝑇 ) ) ⊆ ( ◡ 𝑏 “ ℕ ) ) ) → ( 𝑏 ∘f ↑ 𝐺 ) finSupp ( 0g ‘ 𝑇 ) ) | |
| 112 | 77 78 79 82 110 111 | syl32anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑏 ∘f ↑ 𝐺 ) finSupp ( 0g ‘ 𝑇 ) ) |
| 113 | 59 60 63 64 75 112 | gsumcl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 114 | 3 8 | ringcl | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) ∈ 𝐶 ∧ ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) → ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ 𝐶 ) |
| 115 | 51 58 113 114 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ 𝐷 ) → ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ∈ 𝐶 ) |
| 116 | 115 | fmpttd | ⊢ ( 𝜑 → ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) : 𝐷 ⟶ 𝐶 ) |
| 117 | eldifsnneq | ⊢ ( 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) → ¬ 𝑏 = 𝐴 ) | |
| 118 | 117 | iffalsed | ⊢ ( 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) → if ( 𝑏 = 𝐴 , 𝐻 , 0 ) = 0 ) |
| 119 | 118 | adantl | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) ) → if ( 𝑏 = 𝐴 , 𝐻 , 0 ) = 0 ) |
| 120 | 119 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) ) → ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) = ( 𝐹 ‘ 0 ) ) |
| 121 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 122 | 14 121 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 123 | 16 43 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑆 ) ) |
| 124 | 122 123 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑆 ) ) |
| 125 | 124 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) ) → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑆 ) ) |
| 126 | 120 125 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) ) → ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) = ( 0g ‘ 𝑆 ) ) |
| 127 | 126 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) ) → ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 0g ‘ 𝑆 ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) |
| 128 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) ) → 𝑆 ∈ Ring ) |
| 129 | eldifi | ⊢ ( 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) → 𝑏 ∈ 𝐷 ) | |
| 130 | 129 113 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) ) → ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) |
| 131 | 3 8 43 | ringlz | ⊢ ( ( 𝑆 ∈ Ring ∧ ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ∈ 𝐶 ) → ( ( 0g ‘ 𝑆 ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 132 | 128 130 131 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) ) → ( ( 0g ‘ 𝑆 ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 133 | 127 132 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( 𝐷 ∖ { 𝐴 } ) ) → ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( 0g ‘ 𝑆 ) ) |
| 134 | 133 50 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) supp ( 0g ‘ 𝑆 ) ) ⊆ { 𝐴 } ) |
| 135 | 3 43 47 50 17 116 134 | gsumpt | ⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ‘ 𝐴 ) ) |
| 136 | 42 135 | eqtrd | ⊢ ( 𝜑 → ( 𝑆 Σg ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ ( ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ‘ 𝑏 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ) = ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ‘ 𝐴 ) ) |
| 137 | iftrue | ⊢ ( 𝑏 = 𝐴 → if ( 𝑏 = 𝐴 , 𝐻 , 0 ) = 𝐻 ) | |
| 138 | 137 | fveq2d | ⊢ ( 𝑏 = 𝐴 → ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) = ( 𝐹 ‘ 𝐻 ) ) |
| 139 | oveq1 | ⊢ ( 𝑏 = 𝐴 → ( 𝑏 ∘f ↑ 𝐺 ) = ( 𝐴 ∘f ↑ 𝐺 ) ) | |
| 140 | 139 | oveq2d | ⊢ ( 𝑏 = 𝐴 → ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) = ( 𝑇 Σg ( 𝐴 ∘f ↑ 𝐺 ) ) ) |
| 141 | 138 140 | oveq12d | ⊢ ( 𝑏 = 𝐴 → ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) = ( ( 𝐹 ‘ 𝐻 ) · ( 𝑇 Σg ( 𝐴 ∘f ↑ 𝐺 ) ) ) ) |
| 142 | eqid | ⊢ ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) = ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) | |
| 143 | ovex | ⊢ ( ( 𝐹 ‘ 𝐻 ) · ( 𝑇 Σg ( 𝐴 ∘f ↑ 𝐺 ) ) ) ∈ V | |
| 144 | 141 142 143 | fvmpt | ⊢ ( 𝐴 ∈ 𝐷 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ‘ 𝐴 ) = ( ( 𝐹 ‘ 𝐻 ) · ( 𝑇 Σg ( 𝐴 ∘f ↑ 𝐺 ) ) ) ) |
| 145 | 17 144 | syl | ⊢ ( 𝜑 → ( ( 𝑏 ∈ 𝐷 ↦ ( ( 𝐹 ‘ if ( 𝑏 = 𝐴 , 𝐻 , 0 ) ) · ( 𝑇 Σg ( 𝑏 ∘f ↑ 𝐺 ) ) ) ) ‘ 𝐴 ) = ( ( 𝐹 ‘ 𝐻 ) · ( 𝑇 Σg ( 𝐴 ∘f ↑ 𝐺 ) ) ) ) |
| 146 | 29 136 145 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐸 ‘ ( 𝑥 ∈ 𝐷 ↦ if ( 𝑥 = 𝐴 , 𝐻 , 0 ) ) ) = ( ( 𝐹 ‘ 𝐻 ) · ( 𝑇 Σg ( 𝐴 ∘f ↑ 𝐺 ) ) ) ) |