This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for evlseu , give a formula for (the unique) polynomial evaluation homomorphism. (Contributed by Stefan O'Rear, 9-Mar-2015) (Proof shortened by AV, 26-Jul-2019) (Revised by AV, 11-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evlslem1.p | |- P = ( I mPoly R ) |
|
| evlslem1.b | |- B = ( Base ` P ) |
||
| evlslem1.c | |- C = ( Base ` S ) |
||
| evlslem1.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
||
| evlslem1.t | |- T = ( mulGrp ` S ) |
||
| evlslem1.x | |- .^ = ( .g ` T ) |
||
| evlslem1.m | |- .x. = ( .r ` S ) |
||
| evlslem1.v | |- V = ( I mVar R ) |
||
| evlslem1.e | |- E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
||
| evlslem1.i | |- ( ph -> I e. W ) |
||
| evlslem1.r | |- ( ph -> R e. CRing ) |
||
| evlslem1.s | |- ( ph -> S e. CRing ) |
||
| evlslem1.f | |- ( ph -> F e. ( R RingHom S ) ) |
||
| evlslem1.g | |- ( ph -> G : I --> C ) |
||
| evlslem1.a | |- A = ( algSc ` P ) |
||
| Assertion | evlslem1 | |- ( ph -> ( E e. ( P RingHom S ) /\ ( E o. A ) = F /\ ( E o. V ) = G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evlslem1.p | |- P = ( I mPoly R ) |
|
| 2 | evlslem1.b | |- B = ( Base ` P ) |
|
| 3 | evlslem1.c | |- C = ( Base ` S ) |
|
| 4 | evlslem1.d | |- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
|
| 5 | evlslem1.t | |- T = ( mulGrp ` S ) |
|
| 6 | evlslem1.x | |- .^ = ( .g ` T ) |
|
| 7 | evlslem1.m | |- .x. = ( .r ` S ) |
|
| 8 | evlslem1.v | |- V = ( I mVar R ) |
|
| 9 | evlslem1.e | |- E = ( p e. B |-> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
|
| 10 | evlslem1.i | |- ( ph -> I e. W ) |
|
| 11 | evlslem1.r | |- ( ph -> R e. CRing ) |
|
| 12 | evlslem1.s | |- ( ph -> S e. CRing ) |
|
| 13 | evlslem1.f | |- ( ph -> F e. ( R RingHom S ) ) |
|
| 14 | evlslem1.g | |- ( ph -> G : I --> C ) |
|
| 15 | evlslem1.a | |- A = ( algSc ` P ) |
|
| 16 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 17 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 18 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 19 | 11 | crngringd | |- ( ph -> R e. Ring ) |
| 20 | 1 10 19 | mplringd | |- ( ph -> P e. Ring ) |
| 21 | 12 | crngringd | |- ( ph -> S e. Ring ) |
| 22 | 2fveq3 | |- ( x = ( 1r ` R ) -> ( E ` ( A ` x ) ) = ( E ` ( A ` ( 1r ` R ) ) ) ) |
|
| 23 | fveq2 | |- ( x = ( 1r ` R ) -> ( F ` x ) = ( F ` ( 1r ` R ) ) ) |
|
| 24 | 22 23 | eqeq12d | |- ( x = ( 1r ` R ) -> ( ( E ` ( A ` x ) ) = ( F ` x ) <-> ( E ` ( A ` ( 1r ` R ) ) ) = ( F ` ( 1r ` R ) ) ) ) |
| 25 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 26 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 27 | 10 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> I e. W ) |
| 28 | 19 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> R e. Ring ) |
| 29 | simpr | |- ( ( ph /\ x e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
|
| 30 | 1 4 25 26 15 27 28 29 | mplascl | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( A ` x ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) ) ) |
| 31 | 30 | fveq2d | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( E ` ( A ` x ) ) = ( E ` ( y e. D |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) ) ) ) |
| 32 | 11 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> R e. CRing ) |
| 33 | 12 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> S e. CRing ) |
| 34 | 13 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> F e. ( R RingHom S ) ) |
| 35 | 14 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> G : I --> C ) |
| 36 | 4 | psrbag0 | |- ( I e. W -> ( I X. { 0 } ) e. D ) |
| 37 | 10 36 | syl | |- ( ph -> ( I X. { 0 } ) e. D ) |
| 38 | 37 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( I X. { 0 } ) e. D ) |
| 39 | 1 2 3 26 4 5 6 7 8 9 27 32 33 34 35 25 38 29 | evlslem3 | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( E ` ( y e. D |-> if ( y = ( I X. { 0 } ) , x , ( 0g ` R ) ) ) ) = ( ( F ` x ) .x. ( T gsum ( ( I X. { 0 } ) oF .^ G ) ) ) ) |
| 40 | 0zd | |- ( ( ph /\ x e. I ) -> 0 e. ZZ ) |
|
| 41 | fvexd | |- ( ( ph /\ x e. I ) -> ( G ` x ) e. _V ) |
|
| 42 | fconstmpt | |- ( I X. { 0 } ) = ( x e. I |-> 0 ) |
|
| 43 | 42 | a1i | |- ( ph -> ( I X. { 0 } ) = ( x e. I |-> 0 ) ) |
| 44 | 14 | feqmptd | |- ( ph -> G = ( x e. I |-> ( G ` x ) ) ) |
| 45 | 10 40 41 43 44 | offval2 | |- ( ph -> ( ( I X. { 0 } ) oF .^ G ) = ( x e. I |-> ( 0 .^ ( G ` x ) ) ) ) |
| 46 | 14 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( G ` x ) e. C ) |
| 47 | 5 3 | mgpbas | |- C = ( Base ` T ) |
| 48 | 5 17 | ringidval | |- ( 1r ` S ) = ( 0g ` T ) |
| 49 | 47 48 6 | mulg0 | |- ( ( G ` x ) e. C -> ( 0 .^ ( G ` x ) ) = ( 1r ` S ) ) |
| 50 | 46 49 | syl | |- ( ( ph /\ x e. I ) -> ( 0 .^ ( G ` x ) ) = ( 1r ` S ) ) |
| 51 | 50 | mpteq2dva | |- ( ph -> ( x e. I |-> ( 0 .^ ( G ` x ) ) ) = ( x e. I |-> ( 1r ` S ) ) ) |
| 52 | 45 51 | eqtrd | |- ( ph -> ( ( I X. { 0 } ) oF .^ G ) = ( x e. I |-> ( 1r ` S ) ) ) |
| 53 | 52 | oveq2d | |- ( ph -> ( T gsum ( ( I X. { 0 } ) oF .^ G ) ) = ( T gsum ( x e. I |-> ( 1r ` S ) ) ) ) |
| 54 | 5 | crngmgp | |- ( S e. CRing -> T e. CMnd ) |
| 55 | 12 54 | syl | |- ( ph -> T e. CMnd ) |
| 56 | 55 | cmnmndd | |- ( ph -> T e. Mnd ) |
| 57 | 48 | gsumz | |- ( ( T e. Mnd /\ I e. W ) -> ( T gsum ( x e. I |-> ( 1r ` S ) ) ) = ( 1r ` S ) ) |
| 58 | 56 10 57 | syl2anc | |- ( ph -> ( T gsum ( x e. I |-> ( 1r ` S ) ) ) = ( 1r ` S ) ) |
| 59 | 53 58 | eqtrd | |- ( ph -> ( T gsum ( ( I X. { 0 } ) oF .^ G ) ) = ( 1r ` S ) ) |
| 60 | 59 | adantr | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( T gsum ( ( I X. { 0 } ) oF .^ G ) ) = ( 1r ` S ) ) |
| 61 | 60 | oveq2d | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( F ` x ) .x. ( T gsum ( ( I X. { 0 } ) oF .^ G ) ) ) = ( ( F ` x ) .x. ( 1r ` S ) ) ) |
| 62 | 26 3 | rhmf | |- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> C ) |
| 63 | 13 62 | syl | |- ( ph -> F : ( Base ` R ) --> C ) |
| 64 | 63 | ffvelcdmda | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( F ` x ) e. C ) |
| 65 | 3 7 17 | ringridm | |- ( ( S e. Ring /\ ( F ` x ) e. C ) -> ( ( F ` x ) .x. ( 1r ` S ) ) = ( F ` x ) ) |
| 66 | 21 64 65 | syl2an2r | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( F ` x ) .x. ( 1r ` S ) ) = ( F ` x ) ) |
| 67 | 61 66 | eqtrd | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( F ` x ) .x. ( T gsum ( ( I X. { 0 } ) oF .^ G ) ) ) = ( F ` x ) ) |
| 68 | 31 39 67 | 3eqtrd | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( E ` ( A ` x ) ) = ( F ` x ) ) |
| 69 | 68 | ralrimiva | |- ( ph -> A. x e. ( Base ` R ) ( E ` ( A ` x ) ) = ( F ` x ) ) |
| 70 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 71 | 26 70 | ringidcl | |- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
| 72 | 19 71 | syl | |- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
| 73 | 24 69 72 | rspcdva | |- ( ph -> ( E ` ( A ` ( 1r ` R ) ) ) = ( F ` ( 1r ` R ) ) ) |
| 74 | 1 | mplassa | |- ( ( I e. W /\ R e. CRing ) -> P e. AssAlg ) |
| 75 | 10 11 74 | syl2anc | |- ( ph -> P e. AssAlg ) |
| 76 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 77 | 15 76 | asclrhm | |- ( P e. AssAlg -> A e. ( ( Scalar ` P ) RingHom P ) ) |
| 78 | 75 77 | syl | |- ( ph -> A e. ( ( Scalar ` P ) RingHom P ) ) |
| 79 | 1 10 11 | mplsca | |- ( ph -> R = ( Scalar ` P ) ) |
| 80 | 79 | oveq1d | |- ( ph -> ( R RingHom P ) = ( ( Scalar ` P ) RingHom P ) ) |
| 81 | 78 80 | eleqtrrd | |- ( ph -> A e. ( R RingHom P ) ) |
| 82 | 70 16 | rhm1 | |- ( A e. ( R RingHom P ) -> ( A ` ( 1r ` R ) ) = ( 1r ` P ) ) |
| 83 | 81 82 | syl | |- ( ph -> ( A ` ( 1r ` R ) ) = ( 1r ` P ) ) |
| 84 | 83 | fveq2d | |- ( ph -> ( E ` ( A ` ( 1r ` R ) ) ) = ( E ` ( 1r ` P ) ) ) |
| 85 | 70 17 | rhm1 | |- ( F e. ( R RingHom S ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 86 | 13 85 | syl | |- ( ph -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 87 | 73 84 86 | 3eqtr3d | |- ( ph -> ( E ` ( 1r ` P ) ) = ( 1r ` S ) ) |
| 88 | eqid | |- ( +g ` P ) = ( +g ` P ) |
|
| 89 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 90 | 20 | ringgrpd | |- ( ph -> P e. Grp ) |
| 91 | 21 | ringgrpd | |- ( ph -> S e. Grp ) |
| 92 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 93 | ringcmn | |- ( S e. Ring -> S e. CMnd ) |
|
| 94 | 21 93 | syl | |- ( ph -> S e. CMnd ) |
| 95 | 94 | adantr | |- ( ( ph /\ p e. B ) -> S e. CMnd ) |
| 96 | ovex | |- ( NN0 ^m I ) e. _V |
|
| 97 | 4 96 | rabex2 | |- D e. _V |
| 98 | 97 | a1i | |- ( ( ph /\ p e. B ) -> D e. _V ) |
| 99 | 10 | adantr | |- ( ( ph /\ p e. B ) -> I e. W ) |
| 100 | 11 | adantr | |- ( ( ph /\ p e. B ) -> R e. CRing ) |
| 101 | 12 | adantr | |- ( ( ph /\ p e. B ) -> S e. CRing ) |
| 102 | 13 | adantr | |- ( ( ph /\ p e. B ) -> F e. ( R RingHom S ) ) |
| 103 | 14 | adantr | |- ( ( ph /\ p e. B ) -> G : I --> C ) |
| 104 | simpr | |- ( ( ph /\ p e. B ) -> p e. B ) |
|
| 105 | 1 2 3 4 5 6 7 8 9 99 100 101 102 103 104 | evlslem6 | |- ( ( ph /\ p e. B ) -> ( ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C /\ ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) ) |
| 106 | 105 | simpld | |- ( ( ph /\ p e. B ) -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C ) |
| 107 | 105 | simprd | |- ( ( ph /\ p e. B ) -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) |
| 108 | 3 92 95 98 106 107 | gsumcl | |- ( ( ph /\ p e. B ) -> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) e. C ) |
| 109 | 108 9 | fmptd | |- ( ph -> E : B --> C ) |
| 110 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 111 | simplrl | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> x e. B ) |
|
| 112 | simplrr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> y e. B ) |
|
| 113 | 1 2 110 88 111 112 | mpladd | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( x ( +g ` P ) y ) = ( x oF ( +g ` R ) y ) ) |
| 114 | 113 | fveq1d | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( ( x ( +g ` P ) y ) ` b ) = ( ( x oF ( +g ` R ) y ) ` b ) ) |
| 115 | simprl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x e. B ) |
|
| 116 | 1 26 2 4 115 | mplelf | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x : D --> ( Base ` R ) ) |
| 117 | 116 | ffnd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> x Fn D ) |
| 118 | 117 | adantr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> x Fn D ) |
| 119 | simprr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y e. B ) |
|
| 120 | 1 26 2 4 119 | mplelf | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y : D --> ( Base ` R ) ) |
| 121 | 120 | ffnd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> y Fn D ) |
| 122 | 121 | adantr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> y Fn D ) |
| 123 | 97 | a1i | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> D e. _V ) |
| 124 | simpr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> b e. D ) |
|
| 125 | fnfvof | |- ( ( ( x Fn D /\ y Fn D ) /\ ( D e. _V /\ b e. D ) ) -> ( ( x oF ( +g ` R ) y ) ` b ) = ( ( x ` b ) ( +g ` R ) ( y ` b ) ) ) |
|
| 126 | 118 122 123 124 125 | syl22anc | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( ( x oF ( +g ` R ) y ) ` b ) = ( ( x ` b ) ( +g ` R ) ( y ` b ) ) ) |
| 127 | 114 126 | eqtrd | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( ( x ( +g ` P ) y ) ` b ) = ( ( x ` b ) ( +g ` R ) ( y ` b ) ) ) |
| 128 | 127 | fveq2d | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( F ` ( ( x ( +g ` P ) y ) ` b ) ) = ( F ` ( ( x ` b ) ( +g ` R ) ( y ` b ) ) ) ) |
| 129 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 130 | 13 129 | syl | |- ( ph -> F e. ( R GrpHom S ) ) |
| 131 | 130 | ad2antrr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> F e. ( R GrpHom S ) ) |
| 132 | 116 | ffvelcdmda | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( x ` b ) e. ( Base ` R ) ) |
| 133 | 120 | ffvelcdmda | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( y ` b ) e. ( Base ` R ) ) |
| 134 | 26 110 89 | ghmlin | |- ( ( F e. ( R GrpHom S ) /\ ( x ` b ) e. ( Base ` R ) /\ ( y ` b ) e. ( Base ` R ) ) -> ( F ` ( ( x ` b ) ( +g ` R ) ( y ` b ) ) ) = ( ( F ` ( x ` b ) ) ( +g ` S ) ( F ` ( y ` b ) ) ) ) |
| 135 | 131 132 133 134 | syl3anc | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( F ` ( ( x ` b ) ( +g ` R ) ( y ` b ) ) ) = ( ( F ` ( x ` b ) ) ( +g ` S ) ( F ` ( y ` b ) ) ) ) |
| 136 | 128 135 | eqtrd | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( F ` ( ( x ( +g ` P ) y ) ` b ) ) = ( ( F ` ( x ` b ) ) ( +g ` S ) ( F ` ( y ` b ) ) ) ) |
| 137 | 136 | oveq1d | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( ( F ` ( x ` b ) ) ( +g ` S ) ( F ` ( y ` b ) ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 138 | 21 | ad2antrr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> S e. Ring ) |
| 139 | 63 | ad2antrr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> F : ( Base ` R ) --> C ) |
| 140 | 139 132 | ffvelcdmd | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( F ` ( x ` b ) ) e. C ) |
| 141 | 139 133 | ffvelcdmd | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( F ` ( y ` b ) ) e. C ) |
| 142 | 55 | ad2antrr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> T e. CMnd ) |
| 143 | 14 | ad2antrr | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> G : I --> C ) |
| 144 | 4 47 6 142 124 143 | psrbagev2 | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( T gsum ( b oF .^ G ) ) e. C ) |
| 145 | 3 89 7 | ringdir | |- ( ( S e. Ring /\ ( ( F ` ( x ` b ) ) e. C /\ ( F ` ( y ` b ) ) e. C /\ ( T gsum ( b oF .^ G ) ) e. C ) ) -> ( ( ( F ` ( x ` b ) ) ( +g ` S ) ( F ` ( y ` b ) ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ( +g ` S ) ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 146 | 138 140 141 144 145 | syl13anc | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( ( ( F ` ( x ` b ) ) ( +g ` S ) ( F ` ( y ` b ) ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ( +g ` S ) ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 147 | 137 146 | eqtrd | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ( +g ` S ) ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 148 | 147 | mpteq2dva | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( b e. D |-> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ( +g ` S ) ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 149 | 97 | a1i | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> D e. _V ) |
| 150 | ovexd | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. _V ) |
|
| 151 | ovexd | |- ( ( ( ph /\ ( x e. B /\ y e. B ) ) /\ b e. D ) -> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) e. _V ) |
|
| 152 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
|
| 153 | eqidd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
|
| 154 | 149 150 151 152 153 | offval2 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) oF ( +g ` S ) ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( b e. D |-> ( ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ( +g ` S ) ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 155 | 148 154 | eqtr4d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( b e. D |-> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) oF ( +g ` S ) ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 156 | 155 | oveq2d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( S gsum ( b e. D |-> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) oF ( +g ` S ) ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) ) |
| 157 | 94 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> S e. CMnd ) |
| 158 | 10 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> I e. W ) |
| 159 | 11 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> R e. CRing ) |
| 160 | 12 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> S e. CRing ) |
| 161 | 13 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> F e. ( R RingHom S ) ) |
| 162 | 14 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> G : I --> C ) |
| 163 | 1 2 3 4 5 6 7 8 9 158 159 160 161 162 115 | evlslem6 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C /\ ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) ) |
| 164 | 163 | simpld | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C ) |
| 165 | 1 2 3 4 5 6 7 8 9 158 159 160 161 162 119 | evlslem6 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C /\ ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) ) |
| 166 | 165 | simpld | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) : D --> C ) |
| 167 | 163 | simprd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) |
| 168 | 165 | simprd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) finSupp ( 0g ` S ) ) |
| 169 | 3 92 89 157 149 164 166 167 168 | gsumadd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( S gsum ( ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) oF ( +g ` S ) ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) = ( ( S gsum ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ( +g ` S ) ( S gsum ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) ) |
| 170 | 156 169 | eqtrd | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( S gsum ( b e. D |-> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( ( S gsum ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ( +g ` S ) ( S gsum ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) ) |
| 171 | 90 | adantr | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> P e. Grp ) |
| 172 | 2 88 | grpcl | |- ( ( P e. Grp /\ x e. B /\ y e. B ) -> ( x ( +g ` P ) y ) e. B ) |
| 173 | 171 115 119 172 | syl3anc | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( x ( +g ` P ) y ) e. B ) |
| 174 | fveq1 | |- ( p = ( x ( +g ` P ) y ) -> ( p ` b ) = ( ( x ( +g ` P ) y ) ` b ) ) |
|
| 175 | 174 | fveq2d | |- ( p = ( x ( +g ` P ) y ) -> ( F ` ( p ` b ) ) = ( F ` ( ( x ( +g ` P ) y ) ` b ) ) ) |
| 176 | 175 | oveq1d | |- ( p = ( x ( +g ` P ) y ) -> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 177 | 176 | mpteq2dv | |- ( p = ( x ( +g ` P ) y ) -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 178 | 177 | oveq2d | |- ( p = ( x ( +g ` P ) y ) -> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 179 | ovex | |- ( S gsum ( b e. D |-> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) e. _V |
|
| 180 | 178 9 179 | fvmpt | |- ( ( x ( +g ` P ) y ) e. B -> ( E ` ( x ( +g ` P ) y ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 181 | 173 180 | syl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( E ` ( x ( +g ` P ) y ) ) = ( S gsum ( b e. D |-> ( ( F ` ( ( x ( +g ` P ) y ) ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 182 | fveq1 | |- ( p = x -> ( p ` b ) = ( x ` b ) ) |
|
| 183 | 182 | fveq2d | |- ( p = x -> ( F ` ( p ` b ) ) = ( F ` ( x ` b ) ) ) |
| 184 | 183 | oveq1d | |- ( p = x -> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 185 | 184 | mpteq2dv | |- ( p = x -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 186 | 185 | oveq2d | |- ( p = x -> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 187 | ovex | |- ( S gsum ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) e. _V |
|
| 188 | 186 9 187 | fvmpt | |- ( x e. B -> ( E ` x ) = ( S gsum ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 189 | 115 188 | syl | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( E ` x ) = ( S gsum ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 190 | fveq1 | |- ( p = y -> ( p ` b ) = ( y ` b ) ) |
|
| 191 | 190 | fveq2d | |- ( p = y -> ( F ` ( p ` b ) ) = ( F ` ( y ` b ) ) ) |
| 192 | 191 | oveq1d | |- ( p = y -> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) = ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) |
| 193 | 192 | mpteq2dv | |- ( p = y -> ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) = ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) |
| 194 | 193 | oveq2d | |- ( p = y -> ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) = ( S gsum ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 195 | ovex | |- ( S gsum ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) e. _V |
|
| 196 | 194 9 195 | fvmpt | |- ( y e. B -> ( E ` y ) = ( S gsum ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 197 | 196 | ad2antll | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( E ` y ) = ( S gsum ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) |
| 198 | 189 197 | oveq12d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( E ` x ) ( +g ` S ) ( E ` y ) ) = ( ( S gsum ( b e. D |-> ( ( F ` ( x ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ( +g ` S ) ( S gsum ( b e. D |-> ( ( F ` ( y ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) ) ) |
| 199 | 170 181 198 | 3eqtr4d | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( E ` ( x ( +g ` P ) y ) ) = ( ( E ` x ) ( +g ` S ) ( E ` y ) ) ) |
| 200 | 2 3 88 89 90 91 109 199 | isghmd | |- ( ph -> E e. ( P GrpHom S ) ) |
| 201 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 202 | 201 5 | rhmmhm | |- ( F e. ( R RingHom S ) -> F e. ( ( mulGrp ` R ) MndHom T ) ) |
| 203 | 13 202 | syl | |- ( ph -> F e. ( ( mulGrp ` R ) MndHom T ) ) |
| 204 | 203 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> F e. ( ( mulGrp ` R ) MndHom T ) ) |
| 205 | simprll | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> x e. B ) |
|
| 206 | 1 26 2 4 205 | mplelf | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> x : D --> ( Base ` R ) ) |
| 207 | simprrl | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> z e. D ) |
|
| 208 | 206 207 | ffvelcdmd | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( x ` z ) e. ( Base ` R ) ) |
| 209 | simprlr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> y e. B ) |
|
| 210 | 1 26 2 4 209 | mplelf | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> y : D --> ( Base ` R ) ) |
| 211 | simprrr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> w e. D ) |
|
| 212 | 210 211 | ffvelcdmd | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( y ` w ) e. ( Base ` R ) ) |
| 213 | 201 26 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 214 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 215 | 201 214 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 216 | 5 7 | mgpplusg | |- .x. = ( +g ` T ) |
| 217 | 213 215 216 | mhmlin | |- ( ( F e. ( ( mulGrp ` R ) MndHom T ) /\ ( x ` z ) e. ( Base ` R ) /\ ( y ` w ) e. ( Base ` R ) ) -> ( F ` ( ( x ` z ) ( .r ` R ) ( y ` w ) ) ) = ( ( F ` ( x ` z ) ) .x. ( F ` ( y ` w ) ) ) ) |
| 218 | 204 208 212 217 | syl3anc | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( F ` ( ( x ` z ) ( .r ` R ) ( y ` w ) ) ) = ( ( F ` ( x ` z ) ) .x. ( F ` ( y ` w ) ) ) ) |
| 219 | 56 | ad2antrr | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> T e. Mnd ) |
| 220 | simprl | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> z e. D ) |
|
| 221 | 4 | psrbagf | |- ( z e. D -> z : I --> NN0 ) |
| 222 | 220 221 | syl | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> z : I --> NN0 ) |
| 223 | 222 | ffvelcdmda | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( z ` v ) e. NN0 ) |
| 224 | 4 | psrbagf | |- ( w e. D -> w : I --> NN0 ) |
| 225 | 224 | ad2antll | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> w : I --> NN0 ) |
| 226 | 225 | ffvelcdmda | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( w ` v ) e. NN0 ) |
| 227 | 14 | adantr | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> G : I --> C ) |
| 228 | 227 | ffvelcdmda | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( G ` v ) e. C ) |
| 229 | 47 6 216 | mulgnn0dir | |- ( ( T e. Mnd /\ ( ( z ` v ) e. NN0 /\ ( w ` v ) e. NN0 /\ ( G ` v ) e. C ) ) -> ( ( ( z ` v ) + ( w ` v ) ) .^ ( G ` v ) ) = ( ( ( z ` v ) .^ ( G ` v ) ) .x. ( ( w ` v ) .^ ( G ` v ) ) ) ) |
| 230 | 219 223 226 228 229 | syl13anc | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( ( ( z ` v ) + ( w ` v ) ) .^ ( G ` v ) ) = ( ( ( z ` v ) .^ ( G ` v ) ) .x. ( ( w ` v ) .^ ( G ` v ) ) ) ) |
| 231 | 230 | mpteq2dva | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( v e. I |-> ( ( ( z ` v ) + ( w ` v ) ) .^ ( G ` v ) ) ) = ( v e. I |-> ( ( ( z ` v ) .^ ( G ` v ) ) .x. ( ( w ` v ) .^ ( G ` v ) ) ) ) ) |
| 232 | 10 | adantr | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> I e. W ) |
| 233 | ovexd | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( ( z ` v ) + ( w ` v ) ) e. _V ) |
|
| 234 | fvexd | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( G ` v ) e. _V ) |
|
| 235 | 222 | ffnd | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> z Fn I ) |
| 236 | 225 | ffnd | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> w Fn I ) |
| 237 | inidm | |- ( I i^i I ) = I |
|
| 238 | eqidd | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( z ` v ) = ( z ` v ) ) |
|
| 239 | eqidd | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( w ` v ) = ( w ` v ) ) |
|
| 240 | 235 236 232 232 237 238 239 | offval | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( z oF + w ) = ( v e. I |-> ( ( z ` v ) + ( w ` v ) ) ) ) |
| 241 | 14 | feqmptd | |- ( ph -> G = ( v e. I |-> ( G ` v ) ) ) |
| 242 | 241 | adantr | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> G = ( v e. I |-> ( G ` v ) ) ) |
| 243 | 232 233 234 240 242 | offval2 | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( ( z oF + w ) oF .^ G ) = ( v e. I |-> ( ( ( z ` v ) + ( w ` v ) ) .^ ( G ` v ) ) ) ) |
| 244 | ovexd | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( ( z ` v ) .^ ( G ` v ) ) e. _V ) |
|
| 245 | ovexd | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( ( w ` v ) .^ ( G ` v ) ) e. _V ) |
|
| 246 | 14 | ffnd | |- ( ph -> G Fn I ) |
| 247 | 246 | adantr | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> G Fn I ) |
| 248 | eqidd | |- ( ( ( ph /\ ( z e. D /\ w e. D ) ) /\ v e. I ) -> ( G ` v ) = ( G ` v ) ) |
|
| 249 | 235 247 232 232 237 238 248 | offval | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( z oF .^ G ) = ( v e. I |-> ( ( z ` v ) .^ ( G ` v ) ) ) ) |
| 250 | 236 247 232 232 237 239 248 | offval | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( w oF .^ G ) = ( v e. I |-> ( ( w ` v ) .^ ( G ` v ) ) ) ) |
| 251 | 232 244 245 249 250 | offval2 | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( ( z oF .^ G ) oF .x. ( w oF .^ G ) ) = ( v e. I |-> ( ( ( z ` v ) .^ ( G ` v ) ) .x. ( ( w ` v ) .^ ( G ` v ) ) ) ) ) |
| 252 | 231 243 251 | 3eqtr4d | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( ( z oF + w ) oF .^ G ) = ( ( z oF .^ G ) oF .x. ( w oF .^ G ) ) ) |
| 253 | 252 | oveq2d | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( T gsum ( ( z oF + w ) oF .^ G ) ) = ( T gsum ( ( z oF .^ G ) oF .x. ( w oF .^ G ) ) ) ) |
| 254 | 55 | adantr | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> T e. CMnd ) |
| 255 | 4 47 6 48 254 220 227 | psrbagev1 | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( ( z oF .^ G ) : I --> C /\ ( z oF .^ G ) finSupp ( 1r ` S ) ) ) |
| 256 | 255 | simpld | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( z oF .^ G ) : I --> C ) |
| 257 | simprr | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> w e. D ) |
|
| 258 | 4 47 6 48 254 257 227 | psrbagev1 | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( ( w oF .^ G ) : I --> C /\ ( w oF .^ G ) finSupp ( 1r ` S ) ) ) |
| 259 | 258 | simpld | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( w oF .^ G ) : I --> C ) |
| 260 | 255 | simprd | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( z oF .^ G ) finSupp ( 1r ` S ) ) |
| 261 | 258 | simprd | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( w oF .^ G ) finSupp ( 1r ` S ) ) |
| 262 | 47 48 216 254 232 256 259 260 261 | gsumadd | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( T gsum ( ( z oF .^ G ) oF .x. ( w oF .^ G ) ) ) = ( ( T gsum ( z oF .^ G ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) |
| 263 | 253 262 | eqtrd | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( T gsum ( ( z oF + w ) oF .^ G ) ) = ( ( T gsum ( z oF .^ G ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) |
| 264 | 263 | adantrl | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( T gsum ( ( z oF + w ) oF .^ G ) ) = ( ( T gsum ( z oF .^ G ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) |
| 265 | 218 264 | oveq12d | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( ( F ` ( ( x ` z ) ( .r ` R ) ( y ` w ) ) ) .x. ( T gsum ( ( z oF + w ) oF .^ G ) ) ) = ( ( ( F ` ( x ` z ) ) .x. ( F ` ( y ` w ) ) ) .x. ( ( T gsum ( z oF .^ G ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) ) |
| 266 | 55 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> T e. CMnd ) |
| 267 | 63 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> F : ( Base ` R ) --> C ) |
| 268 | 267 208 | ffvelcdmd | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( F ` ( x ` z ) ) e. C ) |
| 269 | 267 212 | ffvelcdmd | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( F ` ( y ` w ) ) e. C ) |
| 270 | 4 47 6 254 220 227 | psrbagev2 | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( T gsum ( z oF .^ G ) ) e. C ) |
| 271 | 270 | adantrl | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( T gsum ( z oF .^ G ) ) e. C ) |
| 272 | 4 47 6 254 257 227 | psrbagev2 | |- ( ( ph /\ ( z e. D /\ w e. D ) ) -> ( T gsum ( w oF .^ G ) ) e. C ) |
| 273 | 272 | adantrl | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( T gsum ( w oF .^ G ) ) e. C ) |
| 274 | 47 216 | cmn4 | |- ( ( T e. CMnd /\ ( ( F ` ( x ` z ) ) e. C /\ ( F ` ( y ` w ) ) e. C ) /\ ( ( T gsum ( z oF .^ G ) ) e. C /\ ( T gsum ( w oF .^ G ) ) e. C ) ) -> ( ( ( F ` ( x ` z ) ) .x. ( F ` ( y ` w ) ) ) .x. ( ( T gsum ( z oF .^ G ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) = ( ( ( F ` ( x ` z ) ) .x. ( T gsum ( z oF .^ G ) ) ) .x. ( ( F ` ( y ` w ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) ) |
| 275 | 266 268 269 271 273 274 | syl122anc | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( ( ( F ` ( x ` z ) ) .x. ( F ` ( y ` w ) ) ) .x. ( ( T gsum ( z oF .^ G ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) = ( ( ( F ` ( x ` z ) ) .x. ( T gsum ( z oF .^ G ) ) ) .x. ( ( F ` ( y ` w ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) ) |
| 276 | 265 275 | eqtrd | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( ( F ` ( ( x ` z ) ( .r ` R ) ( y ` w ) ) ) .x. ( T gsum ( ( z oF + w ) oF .^ G ) ) ) = ( ( ( F ` ( x ` z ) ) .x. ( T gsum ( z oF .^ G ) ) ) .x. ( ( F ` ( y ` w ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) ) |
| 277 | 10 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> I e. W ) |
| 278 | 11 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> R e. CRing ) |
| 279 | 12 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> S e. CRing ) |
| 280 | 13 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> F e. ( R RingHom S ) ) |
| 281 | 14 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> G : I --> C ) |
| 282 | 4 | psrbagaddcl | |- ( ( z e. D /\ w e. D ) -> ( z oF + w ) e. D ) |
| 283 | 282 | ad2antll | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( z oF + w ) e. D ) |
| 284 | 19 | adantr | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> R e. Ring ) |
| 285 | 26 214 | ringcl | |- ( ( R e. Ring /\ ( x ` z ) e. ( Base ` R ) /\ ( y ` w ) e. ( Base ` R ) ) -> ( ( x ` z ) ( .r ` R ) ( y ` w ) ) e. ( Base ` R ) ) |
| 286 | 284 208 212 285 | syl3anc | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( ( x ` z ) ( .r ` R ) ( y ` w ) ) e. ( Base ` R ) ) |
| 287 | 1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 283 286 | evlslem3 | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( E ` ( v e. D |-> if ( v = ( z oF + w ) , ( ( x ` z ) ( .r ` R ) ( y ` w ) ) , ( 0g ` R ) ) ) ) = ( ( F ` ( ( x ` z ) ( .r ` R ) ( y ` w ) ) ) .x. ( T gsum ( ( z oF + w ) oF .^ G ) ) ) ) |
| 288 | 1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 207 208 | evlslem3 | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( E ` ( v e. D |-> if ( v = z , ( x ` z ) , ( 0g ` R ) ) ) ) = ( ( F ` ( x ` z ) ) .x. ( T gsum ( z oF .^ G ) ) ) ) |
| 289 | 1 2 3 26 4 5 6 7 8 9 277 278 279 280 281 25 211 212 | evlslem3 | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( E ` ( v e. D |-> if ( v = w , ( y ` w ) , ( 0g ` R ) ) ) ) = ( ( F ` ( y ` w ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) |
| 290 | 288 289 | oveq12d | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( ( E ` ( v e. D |-> if ( v = z , ( x ` z ) , ( 0g ` R ) ) ) ) .x. ( E ` ( v e. D |-> if ( v = w , ( y ` w ) , ( 0g ` R ) ) ) ) ) = ( ( ( F ` ( x ` z ) ) .x. ( T gsum ( z oF .^ G ) ) ) .x. ( ( F ` ( y ` w ) ) .x. ( T gsum ( w oF .^ G ) ) ) ) ) |
| 291 | 276 287 290 | 3eqtr4d | |- ( ( ph /\ ( ( x e. B /\ y e. B ) /\ ( z e. D /\ w e. D ) ) ) -> ( E ` ( v e. D |-> if ( v = ( z oF + w ) , ( ( x ` z ) ( .r ` R ) ( y ` w ) ) , ( 0g ` R ) ) ) ) = ( ( E ` ( v e. D |-> if ( v = z , ( x ` z ) , ( 0g ` R ) ) ) ) .x. ( E ` ( v e. D |-> if ( v = w , ( y ` w ) , ( 0g ` R ) ) ) ) ) ) |
| 292 | 1 2 7 25 4 10 11 12 200 291 | evlslem2 | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( E ` ( x ( .r ` P ) y ) ) = ( ( E ` x ) .x. ( E ` y ) ) ) |
| 293 | 2 16 17 18 7 20 21 87 292 3 88 89 109 199 | isrhmd | |- ( ph -> E e. ( P RingHom S ) ) |
| 294 | ovex | |- ( S gsum ( b e. D |-> ( ( F ` ( p ` b ) ) .x. ( T gsum ( b oF .^ G ) ) ) ) ) e. _V |
|
| 295 | 294 9 | fnmpti | |- E Fn B |
| 296 | 295 | a1i | |- ( ph -> E Fn B ) |
| 297 | 26 2 | rhmf | |- ( A e. ( R RingHom P ) -> A : ( Base ` R ) --> B ) |
| 298 | 81 297 | syl | |- ( ph -> A : ( Base ` R ) --> B ) |
| 299 | 298 | ffnd | |- ( ph -> A Fn ( Base ` R ) ) |
| 300 | 298 | frnd | |- ( ph -> ran A C_ B ) |
| 301 | fnco | |- ( ( E Fn B /\ A Fn ( Base ` R ) /\ ran A C_ B ) -> ( E o. A ) Fn ( Base ` R ) ) |
|
| 302 | 296 299 300 301 | syl3anc | |- ( ph -> ( E o. A ) Fn ( Base ` R ) ) |
| 303 | 63 | ffnd | |- ( ph -> F Fn ( Base ` R ) ) |
| 304 | fvco2 | |- ( ( A Fn ( Base ` R ) /\ x e. ( Base ` R ) ) -> ( ( E o. A ) ` x ) = ( E ` ( A ` x ) ) ) |
|
| 305 | 299 304 | sylan | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( E o. A ) ` x ) = ( E ` ( A ` x ) ) ) |
| 306 | 305 68 | eqtrd | |- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( E o. A ) ` x ) = ( F ` x ) ) |
| 307 | 302 303 306 | eqfnfvd | |- ( ph -> ( E o. A ) = F ) |
| 308 | 1 8 2 10 19 | mvrf2 | |- ( ph -> V : I --> B ) |
| 309 | 308 | ffnd | |- ( ph -> V Fn I ) |
| 310 | 308 | frnd | |- ( ph -> ran V C_ B ) |
| 311 | fnco | |- ( ( E Fn B /\ V Fn I /\ ran V C_ B ) -> ( E o. V ) Fn I ) |
|
| 312 | 296 309 310 311 | syl3anc | |- ( ph -> ( E o. V ) Fn I ) |
| 313 | fvco2 | |- ( ( V Fn I /\ x e. I ) -> ( ( E o. V ) ` x ) = ( E ` ( V ` x ) ) ) |
|
| 314 | 309 313 | sylan | |- ( ( ph /\ x e. I ) -> ( ( E o. V ) ` x ) = ( E ` ( V ` x ) ) ) |
| 315 | 10 | adantr | |- ( ( ph /\ x e. I ) -> I e. W ) |
| 316 | 11 | adantr | |- ( ( ph /\ x e. I ) -> R e. CRing ) |
| 317 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 318 | 8 4 25 70 315 316 317 | mvrval | |- ( ( ph /\ x e. I ) -> ( V ` x ) = ( y e. D |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 319 | 318 | fveq2d | |- ( ( ph /\ x e. I ) -> ( E ` ( V ` x ) ) = ( E ` ( y e. D |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) ) |
| 320 | 12 | adantr | |- ( ( ph /\ x e. I ) -> S e. CRing ) |
| 321 | 13 | adantr | |- ( ( ph /\ x e. I ) -> F e. ( R RingHom S ) ) |
| 322 | 14 | adantr | |- ( ( ph /\ x e. I ) -> G : I --> C ) |
| 323 | 4 | psrbagsn | |- ( I e. W -> ( z e. I |-> if ( z = x , 1 , 0 ) ) e. D ) |
| 324 | 10 323 | syl | |- ( ph -> ( z e. I |-> if ( z = x , 1 , 0 ) ) e. D ) |
| 325 | 324 | adantr | |- ( ( ph /\ x e. I ) -> ( z e. I |-> if ( z = x , 1 , 0 ) ) e. D ) |
| 326 | 72 | adantr | |- ( ( ph /\ x e. I ) -> ( 1r ` R ) e. ( Base ` R ) ) |
| 327 | 1 2 3 26 4 5 6 7 8 9 315 316 320 321 322 25 325 326 | evlslem3 | |- ( ( ph /\ x e. I ) -> ( E ` ( y e. D |-> if ( y = ( z e. I |-> if ( z = x , 1 , 0 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) = ( ( F ` ( 1r ` R ) ) .x. ( T gsum ( ( z e. I |-> if ( z = x , 1 , 0 ) ) oF .^ G ) ) ) ) |
| 328 | 86 | adantr | |- ( ( ph /\ x e. I ) -> ( F ` ( 1r ` R ) ) = ( 1r ` S ) ) |
| 329 | 1nn0 | |- 1 e. NN0 |
|
| 330 | 0nn0 | |- 0 e. NN0 |
|
| 331 | 329 330 | ifcli | |- if ( z = x , 1 , 0 ) e. NN0 |
| 332 | 331 | a1i | |- ( ( ph /\ z e. I ) -> if ( z = x , 1 , 0 ) e. NN0 ) |
| 333 | 14 | ffvelcdmda | |- ( ( ph /\ z e. I ) -> ( G ` z ) e. C ) |
| 334 | eqidd | |- ( ph -> ( z e. I |-> if ( z = x , 1 , 0 ) ) = ( z e. I |-> if ( z = x , 1 , 0 ) ) ) |
|
| 335 | 14 | feqmptd | |- ( ph -> G = ( z e. I |-> ( G ` z ) ) ) |
| 336 | 10 332 333 334 335 | offval2 | |- ( ph -> ( ( z e. I |-> if ( z = x , 1 , 0 ) ) oF .^ G ) = ( z e. I |-> ( if ( z = x , 1 , 0 ) .^ ( G ` z ) ) ) ) |
| 337 | oveq1 | |- ( 1 = if ( z = x , 1 , 0 ) -> ( 1 .^ ( G ` z ) ) = ( if ( z = x , 1 , 0 ) .^ ( G ` z ) ) ) |
|
| 338 | 337 | eqeq1d | |- ( 1 = if ( z = x , 1 , 0 ) -> ( ( 1 .^ ( G ` z ) ) = if ( z = x , ( G ` z ) , ( 1r ` S ) ) <-> ( if ( z = x , 1 , 0 ) .^ ( G ` z ) ) = if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ) |
| 339 | oveq1 | |- ( 0 = if ( z = x , 1 , 0 ) -> ( 0 .^ ( G ` z ) ) = ( if ( z = x , 1 , 0 ) .^ ( G ` z ) ) ) |
|
| 340 | 339 | eqeq1d | |- ( 0 = if ( z = x , 1 , 0 ) -> ( ( 0 .^ ( G ` z ) ) = if ( z = x , ( G ` z ) , ( 1r ` S ) ) <-> ( if ( z = x , 1 , 0 ) .^ ( G ` z ) ) = if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ) |
| 341 | 333 | adantr | |- ( ( ( ph /\ z e. I ) /\ z = x ) -> ( G ` z ) e. C ) |
| 342 | 47 6 | mulg1 | |- ( ( G ` z ) e. C -> ( 1 .^ ( G ` z ) ) = ( G ` z ) ) |
| 343 | 341 342 | syl | |- ( ( ( ph /\ z e. I ) /\ z = x ) -> ( 1 .^ ( G ` z ) ) = ( G ` z ) ) |
| 344 | iftrue | |- ( z = x -> if ( z = x , ( G ` z ) , ( 1r ` S ) ) = ( G ` z ) ) |
|
| 345 | 344 | adantl | |- ( ( ( ph /\ z e. I ) /\ z = x ) -> if ( z = x , ( G ` z ) , ( 1r ` S ) ) = ( G ` z ) ) |
| 346 | 343 345 | eqtr4d | |- ( ( ( ph /\ z e. I ) /\ z = x ) -> ( 1 .^ ( G ` z ) ) = if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) |
| 347 | 47 48 6 | mulg0 | |- ( ( G ` z ) e. C -> ( 0 .^ ( G ` z ) ) = ( 1r ` S ) ) |
| 348 | 333 347 | syl | |- ( ( ph /\ z e. I ) -> ( 0 .^ ( G ` z ) ) = ( 1r ` S ) ) |
| 349 | 348 | adantr | |- ( ( ( ph /\ z e. I ) /\ -. z = x ) -> ( 0 .^ ( G ` z ) ) = ( 1r ` S ) ) |
| 350 | iffalse | |- ( -. z = x -> if ( z = x , ( G ` z ) , ( 1r ` S ) ) = ( 1r ` S ) ) |
|
| 351 | 350 | adantl | |- ( ( ( ph /\ z e. I ) /\ -. z = x ) -> if ( z = x , ( G ` z ) , ( 1r ` S ) ) = ( 1r ` S ) ) |
| 352 | 349 351 | eqtr4d | |- ( ( ( ph /\ z e. I ) /\ -. z = x ) -> ( 0 .^ ( G ` z ) ) = if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) |
| 353 | 338 340 346 352 | ifbothda | |- ( ( ph /\ z e. I ) -> ( if ( z = x , 1 , 0 ) .^ ( G ` z ) ) = if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) |
| 354 | 353 | mpteq2dva | |- ( ph -> ( z e. I |-> ( if ( z = x , 1 , 0 ) .^ ( G ` z ) ) ) = ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ) |
| 355 | 336 354 | eqtrd | |- ( ph -> ( ( z e. I |-> if ( z = x , 1 , 0 ) ) oF .^ G ) = ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ) |
| 356 | 355 | adantr | |- ( ( ph /\ x e. I ) -> ( ( z e. I |-> if ( z = x , 1 , 0 ) ) oF .^ G ) = ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ) |
| 357 | 356 | oveq2d | |- ( ( ph /\ x e. I ) -> ( T gsum ( ( z e. I |-> if ( z = x , 1 , 0 ) ) oF .^ G ) ) = ( T gsum ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ) ) |
| 358 | 56 | adantr | |- ( ( ph /\ x e. I ) -> T e. Mnd ) |
| 359 | 333 | adantlr | |- ( ( ( ph /\ x e. I ) /\ z e. I ) -> ( G ` z ) e. C ) |
| 360 | 3 17 | ringidcl | |- ( S e. Ring -> ( 1r ` S ) e. C ) |
| 361 | 21 360 | syl | |- ( ph -> ( 1r ` S ) e. C ) |
| 362 | 361 | ad2antrr | |- ( ( ( ph /\ x e. I ) /\ z e. I ) -> ( 1r ` S ) e. C ) |
| 363 | 359 362 | ifcld | |- ( ( ( ph /\ x e. I ) /\ z e. I ) -> if ( z = x , ( G ` z ) , ( 1r ` S ) ) e. C ) |
| 364 | 363 | fmpttd | |- ( ( ph /\ x e. I ) -> ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) : I --> C ) |
| 365 | eldifsnneq | |- ( z e. ( I \ { x } ) -> -. z = x ) |
|
| 366 | 365 350 | syl | |- ( z e. ( I \ { x } ) -> if ( z = x , ( G ` z ) , ( 1r ` S ) ) = ( 1r ` S ) ) |
| 367 | 366 | adantl | |- ( ( ( ph /\ x e. I ) /\ z e. ( I \ { x } ) ) -> if ( z = x , ( G ` z ) , ( 1r ` S ) ) = ( 1r ` S ) ) |
| 368 | 367 315 | suppss2 | |- ( ( ph /\ x e. I ) -> ( ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) supp ( 1r ` S ) ) C_ { x } ) |
| 369 | 47 48 358 315 317 364 368 | gsumpt | |- ( ( ph /\ x e. I ) -> ( T gsum ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ) = ( ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ` x ) ) |
| 370 | fveq2 | |- ( z = x -> ( G ` z ) = ( G ` x ) ) |
|
| 371 | 344 370 | eqtrd | |- ( z = x -> if ( z = x , ( G ` z ) , ( 1r ` S ) ) = ( G ` x ) ) |
| 372 | eqid | |- ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) = ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) |
|
| 373 | fvex | |- ( G ` x ) e. _V |
|
| 374 | 371 372 373 | fvmpt | |- ( x e. I -> ( ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ` x ) = ( G ` x ) ) |
| 375 | 374 | adantl | |- ( ( ph /\ x e. I ) -> ( ( z e. I |-> if ( z = x , ( G ` z ) , ( 1r ` S ) ) ) ` x ) = ( G ` x ) ) |
| 376 | 357 369 375 | 3eqtrd | |- ( ( ph /\ x e. I ) -> ( T gsum ( ( z e. I |-> if ( z = x , 1 , 0 ) ) oF .^ G ) ) = ( G ` x ) ) |
| 377 | 328 376 | oveq12d | |- ( ( ph /\ x e. I ) -> ( ( F ` ( 1r ` R ) ) .x. ( T gsum ( ( z e. I |-> if ( z = x , 1 , 0 ) ) oF .^ G ) ) ) = ( ( 1r ` S ) .x. ( G ` x ) ) ) |
| 378 | 3 7 17 | ringlidm | |- ( ( S e. Ring /\ ( G ` x ) e. C ) -> ( ( 1r ` S ) .x. ( G ` x ) ) = ( G ` x ) ) |
| 379 | 21 46 378 | syl2an2r | |- ( ( ph /\ x e. I ) -> ( ( 1r ` S ) .x. ( G ` x ) ) = ( G ` x ) ) |
| 380 | 377 379 | eqtrd | |- ( ( ph /\ x e. I ) -> ( ( F ` ( 1r ` R ) ) .x. ( T gsum ( ( z e. I |-> if ( z = x , 1 , 0 ) ) oF .^ G ) ) ) = ( G ` x ) ) |
| 381 | 319 327 380 | 3eqtrd | |- ( ( ph /\ x e. I ) -> ( E ` ( V ` x ) ) = ( G ` x ) ) |
| 382 | 314 381 | eqtrd | |- ( ( ph /\ x e. I ) -> ( ( E o. V ) ` x ) = ( G ` x ) ) |
| 383 | 312 246 382 | eqfnfvd | |- ( ph -> ( E o. V ) = G ) |
| 384 | 293 307 383 | 3jca | |- ( ph -> ( E e. ( P RingHom S ) /\ ( E o. A ) = F /\ ( E o. V ) = G ) ) |