This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringidm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringidm.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringidm.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringidm.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringidm.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringidm.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | 1 2 3 | ringidmlem | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( ( 1 · 𝑋 ) = 𝑋 ∧ ( 𝑋 · 1 ) = 𝑋 ) ) |
| 5 | 4 | simpld | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 1 · 𝑋 ) = 𝑋 ) |