This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag0.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| Assertion | psrbag0 | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag0.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 2 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 3 | 2 | fconst6 | ⊢ ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 |
| 4 | c0ex | ⊢ 0 ∈ V | |
| 5 | 4 | fconst | ⊢ ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 } |
| 6 | incom | ⊢ ( { 0 } ∩ ℕ ) = ( ℕ ∩ { 0 } ) | |
| 7 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
| 8 | disjsn | ⊢ ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ ) | |
| 9 | 7 8 | mpbir | ⊢ ( ℕ ∩ { 0 } ) = ∅ |
| 10 | 6 9 | eqtri | ⊢ ( { 0 } ∩ ℕ ) = ∅ |
| 11 | fimacnvdisj | ⊢ ( ( ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 } ∧ ( { 0 } ∩ ℕ ) = ∅ ) → ( ◡ ( 𝐼 × { 0 } ) “ ℕ ) = ∅ ) | |
| 12 | 5 10 11 | mp2an | ⊢ ( ◡ ( 𝐼 × { 0 } ) “ ℕ ) = ∅ |
| 13 | 0fi | ⊢ ∅ ∈ Fin | |
| 14 | 12 13 | eqeltri | ⊢ ( ◡ ( 𝐼 × { 0 } ) “ ℕ ) ∈ Fin |
| 15 | 3 14 | pm3.2i | ⊢ ( ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝐼 × { 0 } ) “ ℕ ) ∈ Fin ) |
| 16 | 1 | psrbag | ⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝐼 × { 0 } ) ∈ 𝐷 ↔ ( ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 ∧ ( ◡ ( 𝐼 × { 0 } ) “ ℕ ) ∈ Fin ) ) ) |
| 17 | 15 16 | mpbiri | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |