This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmlin.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| ghmlin.a | ⊢ + = ( +g ‘ 𝑆 ) | ||
| ghmlin.b | ⊢ ⨣ = ( +g ‘ 𝑇 ) | ||
| Assertion | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmlin.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| 2 | ghmlin.a | ⊢ + = ( +g ‘ 𝑆 ) | |
| 3 | ghmlin.b | ⊢ ⨣ = ( +g ‘ 𝑇 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 5 | 1 4 2 3 | isghm | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ↔ ( ( 𝑆 ∈ Grp ∧ 𝑇 ∈ Grp ) ∧ ( 𝐹 : 𝑋 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) ) ) |
| 6 | 5 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋 ⟶ ( Base ‘ 𝑇 ) ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 7 | 6 | simprd | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) |
| 8 | fvoveq1 | ⊢ ( 𝑎 = 𝑈 → ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑈 + 𝑏 ) ) ) | |
| 9 | fveq2 | ⊢ ( 𝑎 = 𝑈 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑈 ) ) | |
| 10 | 9 | oveq1d | ⊢ ( 𝑎 = 𝑈 → ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) |
| 11 | 8 10 | eqeq12d | ⊢ ( 𝑎 = 𝑈 → ( ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝑈 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 12 | oveq2 | ⊢ ( 𝑏 = 𝑉 → ( 𝑈 + 𝑏 ) = ( 𝑈 + 𝑉 ) ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝑏 = 𝑉 → ( 𝐹 ‘ ( 𝑈 + 𝑏 ) ) = ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) ) |
| 14 | fveq2 | ⊢ ( 𝑏 = 𝑉 → ( 𝐹 ‘ 𝑏 ) = ( 𝐹 ‘ 𝑉 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑏 = 𝑉 → ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) |
| 16 | 13 15 | eqeq12d | ⊢ ( 𝑏 = 𝑉 → ( ( 𝐹 ‘ ( 𝑈 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) ↔ ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 17 | 11 16 | rspc2v | ⊢ ( ( 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( 𝐹 ‘ ( 𝑎 + 𝑏 ) ) = ( ( 𝐹 ‘ 𝑎 ) ⨣ ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) ) |
| 18 | 7 17 | mpan9 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) |
| 19 | 18 | 3impb | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑈 + 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ⨣ ( 𝐹 ‘ 𝑉 ) ) ) |