This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The addition operation on multivariate polynomials. (Contributed by Mario Carneiro, 9-Jan-2015) (Revised by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpladd.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mpladd.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| mpladd.a | ⊢ + = ( +g ‘ 𝑅 ) | ||
| mpladd.g | ⊢ ✚ = ( +g ‘ 𝑃 ) | ||
| mpladd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| mpladd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | mpladd | ⊢ ( 𝜑 → ( 𝑋 ✚ 𝑌 ) = ( 𝑋 ∘f + 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpladd.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mpladd.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | mpladd.a | ⊢ + = ( +g ‘ 𝑅 ) | |
| 4 | mpladd.g | ⊢ ✚ = ( +g ‘ 𝑃 ) | |
| 5 | mpladd.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | mpladd.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | eqid | ⊢ ( 𝐼 mPwSer 𝑅 ) = ( 𝐼 mPwSer 𝑅 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) | |
| 9 | 1 7 4 | mplplusg | ⊢ ✚ = ( +g ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 10 | 1 7 2 8 | mplbasss | ⊢ 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) |
| 11 | 10 5 | sselid | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 12 | 10 6 | sselid | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ ( 𝐼 mPwSer 𝑅 ) ) ) |
| 13 | 7 8 3 9 11 12 | psradd | ⊢ ( 𝜑 → ( 𝑋 ✚ 𝑌 ) = ( 𝑋 ∘f + 𝑌 ) ) |