This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two group sums. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by Mario Carneiro, 25-Apr-2016) (Revised by AV, 5-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumadd.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsumadd.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsumadd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumadd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumadd.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | ||
| gsumadd.fn | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| gsumadd.hn | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | ||
| Assertion | gsumadd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumadd.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | gsumadd.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 5 | gsumadd.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsumadd.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | gsumadd.h | ⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 8 | gsumadd.fn | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 9 | gsumadd.hn | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) | |
| 10 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 11 | cmnmnd | ⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) | |
| 12 | 4 11 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 13 | 1 | submid | ⊢ ( 𝐺 ∈ Mnd → 𝐵 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 14 | 12 13 | syl | ⊢ ( 𝜑 → 𝐵 ∈ ( SubMnd ‘ 𝐺 ) ) |
| 15 | ssid | ⊢ 𝐵 ⊆ 𝐵 | |
| 16 | 1 10 | cntzcmn | ⊢ ( ( 𝐺 ∈ CMnd ∧ 𝐵 ⊆ 𝐵 ) → ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) = 𝐵 ) |
| 17 | 4 15 16 | sylancl | ⊢ ( 𝜑 → ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) = 𝐵 ) |
| 18 | 15 17 | sseqtrrid | ⊢ ( 𝜑 → 𝐵 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ 𝐵 ) ) |
| 19 | 1 2 3 10 12 5 8 9 14 18 6 7 | gsumzadd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |