This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the scalar injection into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplascl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| mplascl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | ||
| mplascl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mplascl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| mplascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| mplascl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| mplascl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| mplascl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | mplascl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplascl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | mplascl.d | ⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 3 | mplascl.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | mplascl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 5 | mplascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 6 | mplascl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 7 | mplascl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 8 | mplascl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | 1 6 7 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 11 | 4 10 | eqtrid | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 12 | 8 11 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 13 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 14 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 15 | eqid | ⊢ ( ·𝑠 ‘ 𝑃 ) = ( ·𝑠 ‘ 𝑃 ) | |
| 16 | eqid | ⊢ ( 1r ‘ 𝑃 ) = ( 1r ‘ 𝑃 ) | |
| 17 | 5 13 14 15 16 | asclval | ⊢ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 18 | 12 17 | syl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) ) |
| 19 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 20 | 1 2 3 19 16 6 7 | mpl1 | ⊢ ( 𝜑 → ( 1r ‘ 𝑃 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 1r ‘ 𝑃 ) ) = ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) ) |
| 22 | 2 | psrbag0 | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 23 | 6 22 | syl | ⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ 𝐷 ) |
| 24 | 1 15 2 19 3 4 6 7 23 8 | mplmon2 | ⊢ ( 𝜑 → ( 𝑋 ( ·𝑠 ‘ 𝑃 ) ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , 0 ) ) ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |
| 25 | 18 21 24 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑦 ∈ 𝐷 ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑋 , 0 ) ) ) |