This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of group multiples, generalized to NN0 . (Contributed by Mario Carneiro, 11-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnndir.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnndir.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnndir.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulgnn0dir | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnndir.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnndir.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnndir.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | mndsgrp | ⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝐺 ∈ Smgrp ) |
| 6 | 5 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ ) → 𝐺 ∈ Smgrp ) |
| 7 | simplr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℕ ) | |
| 8 | simpr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ ) | |
| 9 | simpr3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ ) → 𝑋 ∈ 𝐵 ) |
| 11 | 1 2 3 | mulgnndir | ⊢ ( ( 𝐺 ∈ Smgrp ∧ ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 12 | 6 7 8 10 11 | syl13anc | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 13 | simpll | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → 𝐺 ∈ Mnd ) | |
| 14 | simpr1 | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ℕ0 ) | |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → 𝑀 ∈ ℕ0 ) |
| 16 | simplr3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → 𝑋 ∈ 𝐵 ) | |
| 17 | 1 2 13 15 16 | mulgnn0cld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 18 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 19 | 1 3 18 | mndrid | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑀 · 𝑋 ) + ( 0g ‘ 𝐺 ) ) = ( 𝑀 · 𝑋 ) ) |
| 20 | 13 17 19 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( ( 𝑀 · 𝑋 ) + ( 0g ‘ 𝐺 ) ) = ( 𝑀 · 𝑋 ) ) |
| 21 | simpr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → 𝑁 = 0 ) | |
| 22 | 21 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 23 | 1 18 2 | mulg0 | ⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 24 | 16 23 | syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 25 | 22 24 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( 𝑁 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) = ( ( 𝑀 · 𝑋 ) + ( 0g ‘ 𝐺 ) ) ) |
| 27 | 21 | oveq2d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( 𝑀 + 𝑁 ) = ( 𝑀 + 0 ) ) |
| 28 | 15 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → 𝑀 ∈ ℂ ) |
| 29 | 28 | addridd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( 𝑀 + 0 ) = 𝑀 ) |
| 30 | 27 29 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( 𝑀 + 𝑁 ) = 𝑀 ) |
| 31 | 30 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( 𝑀 · 𝑋 ) ) |
| 32 | 20 26 31 | 3eqtr4rd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑁 = 0 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 33 | 32 | adantlr | ⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) ∧ 𝑁 = 0 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 34 | simpr2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → 𝑁 ∈ ℕ0 ) | |
| 35 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 36 | 34 35 | sylib | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 38 | 12 33 37 | mpjaodan | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 ∈ ℕ ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 39 | simpll | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝐺 ∈ Mnd ) | |
| 40 | simplr2 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑁 ∈ ℕ0 ) | |
| 41 | simplr3 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑋 ∈ 𝐵 ) | |
| 42 | 1 2 39 40 41 | mulgnn0cld | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 43 | 1 3 18 | mndlid | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
| 44 | 39 42 43 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( ( 0g ‘ 𝐺 ) + ( 𝑁 · 𝑋 ) ) = ( 𝑁 · 𝑋 ) ) |
| 45 | simpr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑀 = 0 ) | |
| 46 | 45 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 47 | 41 23 | syl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 48 | 46 47 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 · 𝑋 ) = ( 0g ‘ 𝐺 ) ) |
| 49 | 48 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) = ( ( 0g ‘ 𝐺 ) + ( 𝑁 · 𝑋 ) ) ) |
| 50 | 45 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 + 𝑁 ) = ( 0 + 𝑁 ) ) |
| 51 | 40 | nn0cnd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → 𝑁 ∈ ℂ ) |
| 52 | 51 | addlidd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 0 + 𝑁 ) = 𝑁 ) |
| 53 | 50 52 | eqtrd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( 𝑀 + 𝑁 ) = 𝑁 ) |
| 54 | 53 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| 55 | 44 49 54 | 3eqtr4rd | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) ∧ 𝑀 = 0 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 56 | elnn0 | ⊢ ( 𝑀 ∈ ℕ0 ↔ ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) | |
| 57 | 14 56 | sylib | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 ∈ ℕ ∨ 𝑀 = 0 ) ) |
| 58 | 38 55 57 | mpjaodan | ⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |