This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebra scalar lifting function is a ring homomorphism. (Contributed by Mario Carneiro, 8-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | asclrhm.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| asclrhm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| Assertion | asclrhm | ⊢ ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 RingHom 𝑊 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclrhm.a | ⊢ 𝐴 = ( algSc ‘ 𝑊 ) | |
| 2 | asclrhm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 4 | eqid | ⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) | |
| 5 | eqid | ⊢ ( 1r ‘ 𝑊 ) = ( 1r ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 8 | 2 | assasca | ⊢ ( 𝑊 ∈ AssAlg → 𝐹 ∈ Ring ) |
| 9 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 10 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 11 | 1 2 10 9 | ascl1 | ⊢ ( 𝑊 ∈ AssAlg → ( 𝐴 ‘ ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝑊 ) ) |
| 12 | 1 2 3 7 6 | ascldimul | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) → ( 𝐴 ‘ ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 13 | 12 | 3expb | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝐹 ) ) ) → ( 𝐴 ‘ ( 𝑥 ( .r ‘ 𝐹 ) 𝑦 ) ) = ( ( 𝐴 ‘ 𝑥 ) ( .r ‘ 𝑊 ) ( 𝐴 ‘ 𝑦 ) ) ) |
| 14 | 1 2 9 10 | asclghm | ⊢ ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 GrpHom 𝑊 ) ) |
| 15 | 3 4 5 6 7 8 9 11 13 14 | isrhm2d | ⊢ ( 𝑊 ∈ AssAlg → 𝐴 ∈ ( 𝐹 RingHom 𝑊 ) ) |